test_data_transforms_box_utils.py 3.37 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import unittest

import d2go.data.transforms.box_utils as bu
import numpy as np
import torch
10
11
12
13
14
15
16
17
18
from d2go.config import CfgNode
from d2go.data.transforms.build import build_transform_gen


def get_default_config():
    cfg = CfgNode()
    cfg.D2GO_DATA = CfgNode()
    cfg.D2GO_DATA.AUG_OPS = CfgNode()
    return cfg
facebook-github-bot's avatar
facebook-github-bot committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


class TestDataTransformsBoxUtils(unittest.TestCase):
    def test_min_box_ar(self):
        box_xywh = [4, 5, 10, 6]
        target_aspect_ratio = 1.0 / 2
        new_box = bu.get_min_box_aspect_ratio(box_xywh, target_aspect_ratio)
        self.assertArrayEqual(torch.Tensor([4, -2, 10, 20]), new_box)

    def test_get_box_from_mask(self):
        img_w, img_h = 8, 6
        mask = np.zeros([img_h, img_w])
        self.assertEqual(mask.shape, (img_h, img_w))
        mask[2:4, 3:6] = 1
        box = bu.get_box_from_mask(mask)
        self.assertEqual(box, (3, 2, 3, 2))

    def test_get_box_from_mask_union(self):
        img_w, img_h = 8, 6
        mask = np.zeros([img_h, img_w])
        self.assertEqual(mask.shape, (img_h, img_w))
        mask[2:4, 1:4] = 1
        mask[5:6, 4:8] = 1
        box = bu.get_box_from_mask(mask)
        self.assertEqual(box, (1, 2, 7, 4))

    def test_get_box_from_mask_empty(self):
        img_w, img_h = 8, 6
        mask = np.zeros([img_h, img_w])
        box = bu.get_box_from_mask(mask)
        self.assertIsNone(box)

    def test_scale_bbox_center(self):
        bbox = torch.Tensor([1, 2, 4, 5])
        out_bbox = bu.scale_bbox_center(bu.scale_bbox_center(bbox, 2.0), 0.5)
        self.assertArrayEqual(bbox, out_bbox)

    def assertArrayEqual(self, a1, a2):
        self.assertTrue(np.array_equal(a1, a2))
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

    def test_enlarge_bounding_box(self):
        default_cfg = get_default_config()

        default_cfg.D2GO_DATA.AUG_OPS.TRAIN = [
            'EnlargeBoundingBoxOp::{"fixed_pad": 20}',
            'EnlargeBoundingBoxOp::{"percentage": 0.2}',
        ]
        enlarge_box_tfm = build_transform_gen(default_cfg, is_train=True)

        boxes = np.array(
            [[91, 46, 144, 111]],
            dtype=np.float64,
        )
        transformed_bboxs = enlarge_box_tfm[0].apply_box(boxes)
        expected_bboxs = np.array(
            [[71, 26, 164, 131]],
            dtype=np.float64,
        )
        err_msg = "transformed_bbox = {}, expected {}".format(
            transformed_bboxs, expected_bboxs
        )
        self.assertTrue(np.allclose(transformed_bboxs, expected_bboxs), err_msg)

        boxes = np.array(
            [[91, 46, 144, 111]],
            dtype=np.float64,
        )
        transformed_bboxs = enlarge_box_tfm[1].apply_box(boxes)
        expected_bboxs = np.array(
            [[85.7, 39.5, 149.3, 117.5]],
            dtype=np.float64,
        )
        err_msg = "transformed_bbox = {}, expected {}".format(
            transformed_bboxs, expected_bboxs
        )
        self.assertTrue(np.allclose(transformed_bboxs, expected_bboxs), err_msg)

        dummy_data = np.array(
            [[91, 46, 144, 111]],
            dtype=np.float64,
        )
        dummy_data_out = enlarge_box_tfm[1].apply_image(dummy_data)
        expected_out = np.array(
            [[91, 46, 144, 111]],
            dtype=np.float64,
        )
        err_msg = "Apply image failed"
        self.assertTrue(np.allclose(dummy_data_out, expected_out), err_msg)