coco.py 6.05 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
COCO dataset which returns image_id for evaluation.

Mostly copy-paste from https://github.com/pytorch/vision/blob/13b35ff/references/detection/coco_utils.py
"""
9
import os
facebook-github-bot's avatar
facebook-github-bot committed
10
from pathlib import Path
11
from PIL import Image
facebook-github-bot's avatar
facebook-github-bot committed
12
13
14
15
16
17

import torch
import torch.utils.data
import torchvision
from pycocotools import mask as coco_mask

18
from detectron2.utils.file_io import PathManager
facebook-github-bot's avatar
facebook-github-bot committed
19
20
21
22
23
import detr.datasets.transforms as T


class CocoDetection(torchvision.datasets.CocoDetection):
    def __init__(self, img_folder, ann_file, transforms, return_masks):
24
        ann_file = PathManager.get_local_path(ann_file)
facebook-github-bot's avatar
facebook-github-bot committed
25
26
27
28
        super(CocoDetection, self).__init__(img_folder, ann_file)
        self._transforms = transforms
        self.prepare = ConvertCocoPolysToMask(return_masks)

29
30
31
32
33
34
    def _load_image(self, id: int) -> Image.Image:
        path = self.coco.loadImgs(id)[0]["file_name"]
        with PathManager.open(os.path.join(self.root, path), "rb") as f:
            image = Image.open(f).convert("RGB")
        return image

facebook-github-bot's avatar
facebook-github-bot committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    def __getitem__(self, idx):
        img, target = super(CocoDetection, self).__getitem__(idx)
        image_id = self.ids[idx]
        target = {'image_id': image_id, 'annotations': target}
        img, target = self.prepare(img, target)
        if self._transforms is not None:
            img, target = self._transforms(img, target)
        return img, target


def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks


class ConvertCocoPolysToMask(object):
    def __init__(self, return_masks=False):
        self.return_masks = return_masks

    def __call__(self, image, target):
        w, h = image.size

        image_id = target["image_id"]
        image_id = torch.tensor([image_id])

        anno = target["annotations"]

        anno = [obj for obj in anno if 'iscrowd' not in obj or obj['iscrowd'] == 0]

        boxes = [obj["bbox"] for obj in anno]
        # guard against no boxes via resizing
        boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
        boxes[:, 2:] += boxes[:, :2]
        boxes[:, 0::2].clamp_(min=0, max=w)
        boxes[:, 1::2].clamp_(min=0, max=h)

        classes = [obj["category_id"] for obj in anno]
        classes = torch.tensor(classes, dtype=torch.int64)

        if self.return_masks:
            segmentations = [obj["segmentation"] for obj in anno]
            masks = convert_coco_poly_to_mask(segmentations, h, w)

        keypoints = None
        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
            num_keypoints = keypoints.shape[0]
            if num_keypoints:
                keypoints = keypoints.view(num_keypoints, -1, 3)

        keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
        boxes = boxes[keep]
        classes = classes[keep]
        if self.return_masks:
            masks = masks[keep]
        if keypoints is not None:
            keypoints = keypoints[keep]

        target = {}
        target["boxes"] = boxes
        target["labels"] = classes
        if self.return_masks:
            target["masks"] = masks
        target["image_id"] = image_id
        if keypoints is not None:
            target["keypoints"] = keypoints

        # for conversion to coco api
        area = torch.tensor([obj["area"] for obj in anno])
        iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno])
        target["area"] = area[keep]
        target["iscrowd"] = iscrowd[keep]

        target["orig_size"] = torch.as_tensor([int(h), int(w)])
        target["size"] = torch.as_tensor([int(h), int(w)])

        return image, target


def make_coco_transforms(image_set):

    normalize = T.Compose([
        T.ToTensor(),
        T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

    scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]

    if image_set == 'train':
        return T.Compose([
            T.RandomHorizontalFlip(),
            T.RandomSelect(
                T.RandomResize(scales, max_size=1333),
                T.Compose([
                    T.RandomResize([400, 500, 600]),
                    T.RandomSizeCrop(384, 600),
                    T.RandomResize(scales, max_size=1333),
                ])
            ),
            normalize,
        ])

    if image_set == 'val':
        return T.Compose([
            T.RandomResize([800], max_size=1333),
            normalize,
        ])

    raise ValueError(f'unknown {image_set}')


def build(image_set, args):
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    if "manifold" in args.coco_path:
        root = args.coco_path
        PATHS = {
            "train": (os.path.join(root, "coco_train2017"), "manifold://fair_vision_data/tree/detectron2/json_dataset_annotations/coco/instances_train2017.json"),
            "val": (os.path.join(root, "coco_val2017"), "manifold://fair_vision_data/tree/detectron2/json_dataset_annotations/coco/instances_val2017.json"),
        }
    else:
        root = Path(args.coco_path)
        assert root.exists(), f'provided COCO path {root} does not exist'
        mode = 'instances'
        PATHS = {
            "train": (root / "train2017", root / "annotations" / f'{mode}_train2017.json'),
            "val": (root / "val2017", root / "annotations" / f'{mode}_val2017.json'),
        }
facebook-github-bot's avatar
facebook-github-bot committed
174
175
176
177

    img_folder, ann_file = PATHS[image_set]
    dataset = CocoDetection(img_folder, ann_file, transforms=make_coco_transforms(image_set), return_masks=args.masks)
    return dataset