test_runner_lightning_task.py 8.67 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import os
import unittest
from copy import deepcopy
from typing import Dict

import pytorch_lightning as pl  # type: ignore
import torch
12
from d2go.config import CfgNode, temp_defrost
13
from d2go.quantization.modeling import set_backend_and_create_qconfig
14
from d2go.runner import create_runner
15
from d2go.runner.callbacks.quantization import QuantizationAwareTraining
facebook-github-bot's avatar
facebook-github-bot committed
16
from d2go.runner.lightning_task import GeneralizedRCNNTask
Yanghan Wang's avatar
Yanghan Wang committed
17
from d2go.utils.testing import meta_arch_helper as mah
18
from d2go.utils.testing.helper import tempdir
Kai Zhang's avatar
Kai Zhang committed
19
from detectron2.modeling import META_ARCH_REGISTRY
facebook-github-bot's avatar
facebook-github-bot committed
20
from detectron2.utils.events import EventStorage
21
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
facebook-github-bot's avatar
facebook-github-bot committed
22
from torch import Tensor
23
from torch.ao.quantization.quantize_fx import convert_fx, prepare_qat_fx
facebook-github-bot's avatar
facebook-github-bot committed
24
25
26
27


class TestLightningTask(unittest.TestCase):
    def _get_cfg(self, tmp_dir: str) -> CfgNode:
28
        cfg = mah.create_detection_cfg(GeneralizedRCNNTask, tmp_dir)
facebook-github-bot's avatar
facebook-github-bot committed
29
30
31
        cfg.TEST.EVAL_PERIOD = cfg.SOLVER.MAX_ITER
        return cfg

32
33
34
35
36
37
38
    def _get_trainer(self, output_dir: str) -> pl.Trainer:
        checkpoint_callback = ModelCheckpoint(dirpath=output_dir, save_last=True)
        return pl.Trainer(
            max_steps=1,
            limit_train_batches=1,
            num_sanity_val_steps=0,
            callbacks=[checkpoint_callback],
39
            logger=False,
40
41
        )

facebook-github-bot's avatar
facebook-github-bot committed
42
43
44
45
46
47
48
49
50
51
52
    def _compare_state_dict(
        self, state1: Dict[str, Tensor], state2: Dict[str, Tensor]
    ) -> bool:
        if state1.keys() != state2.keys():
            return False

        for k in state1:
            if not torch.allclose(state1[k], state2[k]):
                return False
        return True

53
54
55
56
    @tempdir
    def test_load_from_checkpoint(self, tmp_dir) -> None:
        task = GeneralizedRCNNTask(self._get_cfg(tmp_dir))

57
        trainer = self._get_trainer(tmp_dir)
58
59
60
61
62
63
64
65
66
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)
            ckpt_path = os.path.join(tmp_dir, "test.ckpt")
            trainer.save_checkpoint(ckpt_path)
            self.assertTrue(os.path.exists(ckpt_path))

            # load model weights from checkpoint
            task2 = GeneralizedRCNNTask.load_from_checkpoint(ckpt_path)
facebook-github-bot's avatar
facebook-github-bot committed
67
            self.assertTrue(
68
69
70
                self._compare_state_dict(
                    task.model.state_dict(), task2.model.state_dict()
                )
facebook-github-bot's avatar
facebook-github-bot committed
71
72
            )

73
74
75
76
77
78
79
80
    @tempdir
    def test_train_ema(self, tmp_dir):
        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL_EMA.ENABLED = True
        cfg.MODEL_EMA.DECAY = 0.7
        task = GeneralizedRCNNTask(cfg)
        init_state = deepcopy(task.model.state_dict())

81
        trainer = self._get_trainer(tmp_dir)
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)

        for k, v in task.model.state_dict().items():
            init_state[k].copy_(init_state[k] * 0.7 + 0.3 * v)

        self.assertTrue(
            self._compare_state_dict(init_state, task.ema_state.state_dict())
        )

    @tempdir
    def test_load_ema_weights(self, tmp_dir):
        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL_EMA.ENABLED = True
        task = GeneralizedRCNNTask(cfg)
98
        trainer = self._get_trainer(tmp_dir)
99
100
101
102
103
104
105
106
107
108
109
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)

        # load EMA weights from checkpoint
        task2 = GeneralizedRCNNTask.load_from_checkpoint(
            os.path.join(tmp_dir, "last.ckpt")
        )
        self.assertTrue(
            self._compare_state_dict(
                task.ema_state.state_dict(), task2.ema_state.state_dict()
facebook-github-bot's avatar
facebook-github-bot committed
110
            )
111
        )
facebook-github-bot's avatar
facebook-github-bot committed
112

113
114
115
116
117
        # apply EMA weights to model
        task2.ema_state.apply_to(task2.model)
        self.assertTrue(
            self._compare_state_dict(
                task.ema_state.state_dict(), task2.model.state_dict()
118
            )
119
120
121
122
123
124
125
126
127
128
129
130
131
        )

    def test_create_runner(self):
        task_cls = create_runner(
            f"{GeneralizedRCNNTask.__module__}.{GeneralizedRCNNTask.__name__}"
        )
        self.assertTrue(task_cls == GeneralizedRCNNTask)

    @tempdir
    def test_build_model(self, tmp_dir):
        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL_EMA.ENABLED = True
        task = GeneralizedRCNNTask(cfg)
132
        trainer = self._get_trainer(tmp_dir)
133
134
135
136
137
138
139
140
141
142
143
144
145
146

        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)

        # test building untrained model
        model = GeneralizedRCNNTask.build_model(cfg)
        self.assertTrue(model.training)

        # test loading regular weights
        with temp_defrost(cfg):
            cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt")
            model = GeneralizedRCNNTask.build_model(cfg, eval_only=True)
            self.assertFalse(model.training)
147
            self.assertTrue(
148
                self._compare_state_dict(model.state_dict(), task.model.state_dict())
149
            )
facebook-github-bot's avatar
facebook-github-bot committed
150

151
152
153
154
155
156
        # test loading EMA weights
        with temp_defrost(cfg):
            cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt")
            cfg.MODEL_EMA.USE_EMA_WEIGHTS_FOR_EVAL_ONLY = True
            model = GeneralizedRCNNTask.build_model(cfg, eval_only=True)
            self.assertFalse(model.training)
157
158
            self.assertTrue(
                self._compare_state_dict(
159
                    model.state_dict(), task.ema_state.state_dict()
160
161
                )
            )
Kai Zhang's avatar
Kai Zhang committed
162
163

    @tempdir
164
165
166
    @unittest.skip(
        "FX Graph Mode Quantization API has been updated, re-enable the test after PyTorch 1.13 stable release"
    )
Kai Zhang's avatar
Kai Zhang committed
167
168
169
170
171
172
173
174
175
176
177
    def test_qat(self, tmp_dir):
        @META_ARCH_REGISTRY.register()
        class QuantizableDetMetaArchForTest(mah.DetMetaArchForTest):
            custom_config_dict = {"preserved_attributes": ["preserved_attr"]}

            def __init__(self, cfg):
                super().__init__(cfg)
                self.avgpool.preserved_attr = "foo"
                self.avgpool.not_preserved_attr = "bar"

            def prepare_for_quant(self, cfg):
178
                example_inputs = (torch.rand(1, 3, 3, 3),)
Kai Zhang's avatar
Kai Zhang committed
179
180
                self.avgpool = prepare_qat_fx(
                    self.avgpool,
181
                    {"": set_backend_and_create_qconfig(cfg, is_train=self.training)},
182
                    example_inputs,
Kai Zhang's avatar
Kai Zhang committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
                    self.custom_config_dict,
                )
                return self

            def prepare_for_quant_convert(self, cfg):
                self.avgpool = convert_fx(
                    self.avgpool, convert_custom_config_dict=self.custom_config_dict
                )
                return self

        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL.META_ARCHITECTURE = "QuantizableDetMetaArchForTest"
        cfg.QUANTIZATION.QAT.ENABLED = True
        task = GeneralizedRCNNTask(cfg)

        callbacks = [
            QuantizationAwareTraining.from_config(cfg),
            ModelCheckpoint(dirpath=task.cfg.OUTPUT_DIR, save_last=True),
        ]
        trainer = pl.Trainer(
            max_steps=1,
            limit_train_batches=1,
            num_sanity_val_steps=0,
            callbacks=callbacks,
207
            logger=False,
Kai Zhang's avatar
Kai Zhang committed
208
209
210
211
212
213
214
215
216
217
218
219
        )
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)
        prepared_avgpool = task._prepared.model.avgpool
        self.assertEqual(prepared_avgpool.preserved_attr, "foo")
        self.assertFalse(hasattr(prepared_avgpool, "not_preserved_attr"))

        with temp_defrost(cfg):
            cfg.MODEL.WEIGHTS = os.path.join(tmp_dir, "last.ckpt")
            model = GeneralizedRCNNTask.build_model(cfg, eval_only=True)
            self.assertTrue(isinstance(model.avgpool, torch.fx.GraphModule))
220
221
222
223
224
225
226
227
228

    @tempdir
    def test_meta_arch_training_step(self, tmp_dir):
        @META_ARCH_REGISTRY.register()
        class DetMetaArchForWithTrainingStep(mah.DetMetaArchForTest):
            def training_step(self, batch, batch_idx, opt, manual_backward):
                assert batch
                assert opt
                assert manual_backward
Yanghan Wang's avatar
Yanghan Wang committed
229
                # We step the optimizer for progress tracking to occur
230
231
232
233
                # This is reflected in the Trainer's global_step property
                # which is used to determine when to stop training
                # when specifying the loop bounds with Trainer(max_steps=N)
                opt.step()
234
235
236
237
238
239
240
241
242
243
244
                return {"total_loss": 0.4}

        cfg = self._get_cfg(tmp_dir)
        cfg.MODEL.META_ARCHITECTURE = "DetMetaArchForWithTrainingStep"

        task = GeneralizedRCNNTask(cfg)

        trainer = self._get_trainer(tmp_dir)
        with EventStorage() as storage:
            task.storage = storage
            trainer.fit(task)