test_api.py 8.52 KB
Newer Older
Owen Wang's avatar
Owen Wang committed
1
2
3
4
5
6
7
8
9
10
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import os
import unittest
from typing import List

import torch
import torch.nn as nn
11
12
from d2go.export.api import FuncInfo, PredictorExportConfig
from d2go.export.exporter import convert_and_export_predictor
Owen Wang's avatar
Owen Wang committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from d2go.export.torchscript import (
    DefaultTorchscriptExport,
    TracingAdaptedTorchscriptExport,
)
from mobile_cv.common.misc.file_utils import make_temp_directory
from mobile_cv.predictor.api import create_predictor
from parameterized import parameterized


class SimpleModel(nn.Module):
    def forward(self, x):
        return 2 * x

    def prepare_for_export(self, cfg, inputs, predictor_type):
        # pre/post processing and run_func are default values
        return PredictorExportConfig(
            model=self,
            # model(x) -> model(*(x,))
            data_generator=lambda x: (x,),
        )


class TwoPartSimpleModel(nn.Module):
    """
    Suppose there're some function in the middle that can't be traced, therefore we
    need to export the model as two parts.
    """

    def __init__(self):
        super().__init__()
        self.part1 = SimpleModel()
        self.part2 = SimpleModel()

    def forward(self, x):
        x = self.part1(x)
        x = TwoPartSimpleModel.non_traceable_func(x)
        x = self.part2(x)
        return x

    def prepare_for_export(self, cfg, inputs, predictor_type):
        def data_generator(x):
            part1_args = (x,)
            x = self.part1(x)
            x = TwoPartSimpleModel.non_traceable_func(x)
            part2_args = (x,)
            return {"part1": part1_args, "part2": part2_args}

        return PredictorExportConfig(
            model={"part1": self.part1, "part2": self.part2},
            data_generator=data_generator,
            run_func_info=FuncInfo.gen_func_info(TwoPartSimpleModel.RunFunc, params={}),
        )

    @staticmethod
    def non_traceable_func(x):
        return x + 1 if len(x.shape) > 3 else x - 1

    class RunFunc(object):
        def __call__(self, model, x):
            assert isinstance(model, dict)
            x = model["part1"](x)
            x = TwoPartSimpleModel.non_traceable_func(x)
            x = model["part2"](x)
            return x


class ScriptingOnlyModel(nn.Module):
    """
    Example of a model that requires scripting (eg. having control loop).
    """

    def forward(self, inputs: List[torch.Tensor]) -> List[torch.Tensor]:
        outputs = []
        for i, t in enumerate(inputs):
            outputs.append(t * i)
        return outputs

    def prepare_for_export(self, cfg, inputs, predictor_type):
        if cfg == "explicit":
            return PredictorExportConfig(
                model=self,
                data_generator=None,  # data is not needed for scripting
                model_export_kwargs={
                    "jit_mode": "script"
                },  # explicitly using script mode
            )
        elif cfg == "implicit":
            # Sometime user wants to switch between scripting and tracing without
            # touching the PredictorExportConfig
            return PredictorExportConfig(
                model=self,
                data_generator=None,  # data is not needed for scripting
            )
        raise NotImplementedError()


class TestExportAPI(unittest.TestCase):
    def _export_simple_model(self, cfg, model, data, output_dir, predictor_type):
        predictor_path = convert_and_export_predictor(
            cfg,
            model,
            predictor_type=predictor_type,
            output_dir=output_dir,
            data_loader=iter([data] * 3),
        )
        self.assertTrue(os.path.isdir(predictor_path))

        # also test loading predictor
        predictor = create_predictor(predictor_path)
        return predictor

    def test_simple_model(self):
        with make_temp_directory("test_simple_model") as tmp_dir:
            model = SimpleModel()
            predictor = self._export_simple_model(
                None, model, torch.tensor(1), tmp_dir, predictor_type="torchscript"
            )
            x = torch.tensor(42)
            self.assertEqual(predictor(x), model(x))

    def test_simple_two_part_model(self):
        with make_temp_directory("test_simple_two_part_model") as tmp_dir:
            model = TwoPartSimpleModel()
            predictor = self._export_simple_model(
                None, model, torch.tensor(1), tmp_dir, predictor_type="torchscript"
            )
            x = torch.tensor(42)
            self.assertEqual(predictor(x), model(x))

    def test_script_only_model(self):
        def _validate(predictor):
            outputs = predictor([torch.tensor(1), torch.tensor(2), torch.tensor(3)])
            self.assertEqual(len(outputs), 3)
            self.assertEqual(
                outputs, [torch.tensor(0), torch.tensor(2), torch.tensor(6)]
            )

        # Method 1: explicitly set jit_mode to "trace"
        with make_temp_directory("test_test_script_only_model") as tmp_dir:
            model = ScriptingOnlyModel()
            predictor = self._export_simple_model(
                "explicit", model, None, tmp_dir, predictor_type="torchscript"
            )
            _validate(predictor)

        # Method 2: using torchscript@scripting as predictor type
        with make_temp_directory("test_test_script_only_model") as tmp_dir:
            model = ScriptingOnlyModel()
            predictor = self._export_simple_model(
                "implicit", model, None, tmp_dir, predictor_type="torchscript@scripting"
            )
            _validate(predictor)


class MultiTensorInSingleTensorOut(nn.Module):
    def forward(self, x, y):
        return x + y

    @staticmethod
    def get_input_args():
        return (torch.tensor([2]), torch.tensor([3]))

    @staticmethod
    def check_outputs(new_output, original_output):
        torch.testing.assert_allclose(new_output, torch.tensor([5]))


# NOTE: caffe2 wrapper assumes tensors are fp32
class SingleListInSingleListOut(nn.Module):
    def forward(self, inputs):
        x, y = inputs
        return [x + y]

    @staticmethod
    def get_input_args():
        inputs = [torch.tensor([2.0]), torch.tensor([3.0])]
        return (inputs,)

    @staticmethod
    def check_outputs(new_output, original_output):
        assert len(new_output) == 1
        torch.testing.assert_allclose(new_output[0], torch.tensor([5.0]))


class MultiDictInMultiDictOut(nn.Module):
    def forward(self, x, y):
        first = {"add": x["first"] + y["first"], "sub": x["first"] - y["first"]}
        second = {"add": x["second"] + y["second"], "sub": x["second"] - y["second"]}
        return [first, second]

    @staticmethod
    def get_input_args():
        return (
            {"first": torch.tensor([1]), "second": torch.tensor([2])},  # x
            {"first": torch.tensor([3]), "second": torch.tensor([4])},  # y
        )

    @staticmethod
    def check_outputs(new_output, original_output):
        first, second = original_output
        torch.testing.assert_allclose(first["add"], torch.tensor([4]))
        torch.testing.assert_allclose(first["sub"], torch.tensor([-2]))
        torch.testing.assert_allclose(second["add"], torch.tensor([6]))
        torch.testing.assert_allclose(second["sub"], torch.tensor([-2]))


219
220
221
222
223
224
225
226
227
228
229
230
231
MODEL_EXPORT_METHOD_TEST_CASES = [
    [DefaultTorchscriptExport, MultiTensorInSingleTensorOut],
    [DefaultTorchscriptExport, SingleListInSingleListOut],
    [TracingAdaptedTorchscriptExport, MultiTensorInSingleTensorOut],
    [TracingAdaptedTorchscriptExport, SingleListInSingleListOut],
    [TracingAdaptedTorchscriptExport, MultiDictInMultiDictOut],
]


try:
    from d2go.export.fb.caffe2 import DefaultCaffe2Export

    MODEL_EXPORT_METHOD_TEST_CASES.extend(
Owen Wang's avatar
Owen Wang committed
232
233
234
        [
            # [DefaultCaffe2Export, MultiTensorInSingleTensorOut],  # TODO: make caffe2 support this
            [DefaultCaffe2Export, SingleListInSingleListOut],
235
236
237
238
239
240
241
242
243
        ]
    )
except ImportError:
    pass


class TestModelExportMethods(unittest.TestCase):
    @parameterized.expand(
        MODEL_EXPORT_METHOD_TEST_CASES,
Owen Wang's avatar
Owen Wang committed
244
245
246
247
248
249
250
251
252
253
254
255
256
        name_func=lambda testcase_func, param_num, param: (
            "{}_{}_{}".format(
                testcase_func.__name__, param.args[0].__name__, param.args[1].__name__
            )
        ),
    )
    def test_interface(self, model_export_method, test_model_class):
        model = test_model_class()
        input_args = test_model_class.get_input_args()
        output_checker = test_model_class.check_outputs
        model_export_method.test_export_and_load(
            model, input_args, None, {}, output_checker
        )