test_visualization.py 4.74 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import copy
import json
import os
import unittest
from typing import Optional, List, Tuple, Dict

import d2go.runner.default_runner as default_runner
import torch
from d2go.utils.testing.data_loader_helper import (
    LocalImageGenerator,
    create_toy_dataset,
)
from d2go.utils.testing.helper import tempdir
from d2go.utils.visualization import VisualizerWrapper, DataLoaderVisWrapper
from detectron2.data import DatasetCatalog
from detectron2.structures import Boxes, Instances
from detectron2.utils.events import EventStorage


def create_test_images_and_dataset_json(
    data_dir: str, img_w: int, img_h: int, num_images: int = 10, num_classes: int = -1
) -> Tuple[str, str]:
    # create image and json
    image_dir = os.path.join(data_dir, "images")
    os.makedirs(image_dir)
    json_dataset, meta_data = create_toy_dataset(
        LocalImageGenerator(image_dir, width=img_w, height=img_h),
        num_images=num_images,
        num_classes=num_classes,
    )
    json_file = os.path.join(data_dir, "{}.json".format("inj_ds1"))

    with open(json_file, "w") as f:
        json.dump(json_dataset, f)

    return image_dir, json_file


def create_dummy_input_dict(
    img_w: int = 60, img_h: int = 60, bbox_list: Optional[List[List[int]]] = None
) -> Dict:
    # Create dummy data
    instance = Instances((img_w, img_h))
    if bbox_list is not None:
        instance.gt_boxes = Boxes(torch.tensor([[10, 10, 20, 20]]))
        instance.gt_classes = torch.tensor([0])
    input_dict = {"image": torch.zeros(3, img_w, img_h), "instances": instance}
    return input_dict


class ImageDictStore:
    def __init__(self):
        self.write_buffer = []

    def add_image(self, **kwargs):
        self.write_buffer.append(copy.deepcopy(kwargs))


class MockTbxWriter:
    def __init__(self):
        self._writer = ImageDictStore()


class TestVisualization(unittest.TestCase):
    @tempdir
    def test_visualizer_wrapper(self, tmp_dir: str):
        image_dir, json_file = create_test_images_and_dataset_json(tmp_dir, 60, 60)

        # Create config data
        runner = default_runner.Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_list(
            [
                "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES",
                str(["inj_ds1"]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS",
                str([image_dir]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES",
                str([json_file]),
                "DATASETS.TRAIN",
                str(["inj_ds1"]),
            ]
        )

        # Register configs
        runner.register(cfg)
        DatasetCatalog.get("inj_ds1")

        # Create dummy data to pass to wrapper
        input_dict = create_dummy_input_dict(60, 60, [[10, 10, 20, 20]])
        vis_wrapper = VisualizerWrapper(cfg)
        vis_image = vis_wrapper.visualize_train_input(input_dict)
        # Visualize train by default scales input image by 2
        self.assertTrue(any(vis_image[20, 20, :] != 0))
        self.assertFalse(any(vis_image[30, 30, :] != 0))
        self.assertTrue(any(vis_image[40, 40, :] != 0))

    @tempdir
    def test_dataloader_visualizer_wrapper(self, tmp_dir: str):
        image_dir, json_file = create_test_images_and_dataset_json(tmp_dir, 60, 60)

        # Create config data
        runner = default_runner.Detectron2GoRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_list(
            [
                "D2GO_DATA.DATASETS.COCO_INJECTION.NAMES",
                str(["inj_ds2"]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.IM_DIRS",
                str([image_dir]),
                "D2GO_DATA.DATASETS.COCO_INJECTION.JSON_FILES",
                str([json_file]),
                "DATASETS.TRAIN",
                str(["inj_ds2"]),
            ]
        )

        # Register configs
        runner.register(cfg)
        DatasetCatalog.get("inj_ds2")

        with EventStorage():
            # Create mock storage for writer
            mock_tbx_writer = MockTbxWriter()
            # Create a wrapper around an iterable object and run once
            input_dict = create_dummy_input_dict(60, 60, [[1, 1, 2, 2]])
            dl_wrapper = DataLoaderVisWrapper(
                cfg, mock_tbx_writer, [[input_dict], [input_dict]]
            )
            for _ in dl_wrapper:
                break

            # Check data has been written to buffer
            self.assertTrue(len(mock_tbx_writer._writer.write_buffer) == 1)
            vis_image_dict = mock_tbx_writer._writer.write_buffer[0]
            self.assertTrue("tag" in vis_image_dict)
            self.assertTrue("img_tensor" in vis_image_dict)
            self.assertTrue("global_step" in vis_image_dict)