1. 27 Mar, 2025 2 commits
  2. 25 Mar, 2025 1 commit
    • Matthew Douglas's avatar
      PyTorch Custom Operator Integration (#1544) · e82f72b3
      Matthew Douglas authored
      
      
      * Sketch out first custom op registration
      
      * Add note
      
      * Initial int8 op registration
      
      * Cleanup some deprecated functions.
      
      * Int8 ops updates; tests
      
      * Implement 4bit quant/dequant ops
      
      * Fix nested quant
      
      * cleanup
      
      * Test improvements
      
      * Clean up and improve tests
      
      * Add higher level custom op for int8 matmul + dequant + bias
      
      * Add gemv 4bit custom op
      
      * Cleanup
      
      * Implement out kwarg overloads for custom ops
      
      * Update PyTorch minimum to 2.1
      
      * Deprecation updates
      
      * Deprecation updates
      
      * Cleanup; rename int8_linear_dequant -> int8_scaled_mm
      
      * Bump min pytorch to 2.2
      
      * cleanup
      
      * Test reorganization
      
      * Remove deprecated supports_igemmlt
      
      * More cleanup
      
      * Cleanup obsolete C++/CUDA code
      
      * Cleanup
      
      * Create 'default' backend for fallback op implementations; initial CPU nf4 work
      
      * Stub out for multi-platform
      
      * Fix serialization tests for torch>=2.6.0
      
      * Add example for torch.compile e2e inference
      
      * Test update
      
      ---------
      Co-authored-by: default avatarTitus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com>
      e82f72b3
  3. 05 Dec, 2024 1 commit
    • Matthew Douglas's avatar
      LLM.int8() Refactoring: Part 1 (#1401) · 81e6345d
      Matthew Douglas authored
      
      
      * Start of int8 refactor: remove col32/col_ampere/col_turing transforms in new igemmlt implementation
      
      * Fix unintended change
      
      * New naive mm_dequant kernel for row-major; cleanup
      
      * fix
      
      * int8 refactor: initial sparse decomp, cleanup
      
      * Int8 refactoring: remove separate NO_CUBLASLT build; more cleanup
      
      * int8: inference optimizations, some cleanup
      
      * int8: more tests passing, cleanup
      
      * int8 - more cleanup, most tests passing
      
      * int8: specify CUDA stream for int8 ops
      
      * perf: reduce overhead from getting cudaStream ptr
      
      * Mark some functions for deprecation.
      
      * int8 sparse decomp: small perf improvement
      
      * update setup.py
      
      * Update bitsandbytes/autograd/_functions.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * Update bitsandbytes/functional.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * Update bitsandbytes/functional.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * Update bitsandbytes/research/autograd/_functions.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * int8 - perf improvement for sparse decomposition inference; deprecate get_tensor_stream() in favor of new private fn
      
      * int8 cleanup
      
      * Ignore ruff rule ISC001 (incompatible with formatter)
      
      * add comment
      
      * int8 more cleanup
      
      * Update bitsandbytes/functional.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * int8: rename / deprecate old fn signatures
      
      * Update bitsandbytes/functional.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * type annotation
      
      * format update
      
      * Update bitsandbytes/research/autograd/_functions.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * cleanup
      
      * Add comment to explain division optimization
      
      * more cleanup
      
      * Update bitsandbytes/functional.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * Update bitsandbytes/functional.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * Update bitsandbytes/functional.py
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      
      * cleanup
      
      * Type annotations, cleanup
      
      * remove unused kernels; improved type annotations
      
      * small perf optimization for single-GPU systems
      
      * small perf optimization for single-GPU systems
      
      * update docstrings
      
      * Improve docs and tests
      
      * Update docstring
      
      * Update test
      
      * add benchmarking script
      
      * test cleanup: add deprecated marker, move benchmarks out
      
      * Add int8 dequant function; misc improvements
      
      * int8 matmul fallback for inner dims not divisible by 4
      
      * improve register usage of kInt8VectorQuant - especially for A100/H100
      
      * disable fail-fast for package build
      
      * maxwell compat
      
      * ptxas verbose
      
      * docs update
      
      * doc update
      
      * backward fix
      
      * Bugfix sparse decomp
      
      * Int8 fix for PEFT OLoRA init
      
      * Fix test for deprecated spmm_coo
      
      * test improvement
      
      * doc update
      
      * typo
      
      * doc cleanup
      
      * docs
      
      * add inference benchmark script
      
      * Add benchmarks, doc update
      
      ---------
      Co-authored-by: default avatarAarni Koskela <akx@iki.fi>
      81e6345d
  4. 20 Sep, 2024 2 commits
  5. 14 Aug, 2024 1 commit
  6. 06 Aug, 2024 1 commit
  7. 15 Jul, 2024 1 commit
  8. 30 May, 2024 1 commit
    • Benjamin Bossan's avatar
      FIX Make Int8Params deepcopy-able · ed99b3c1
      Benjamin Bossan authored
      This requires to implement the __deepcopy__ method in Int8Params.
      Moreover, there was an issue in the Linear8BitLT constructor that would
      assign instance attributes to the class, which is now fixed.
      
      Please review carefully that this does not impact existing code.
      
      Tests that I ran:
      
      - pytest tests/test_linear8bitlt.py
      - in PEFT: python -m pytest -m "single_gpu_tests and bitsandbytes" tests/test_gpu_examples.py
      - in PEFT: python -m pytest -m "single_gpu_tests and bitsandbytes" tests/test_common_gpu.py
      - in transformers: RUN_SLOW=1 python -m pytest tests/quantization/bnb -x
      ed99b3c1
  9. 29 May, 2024 1 commit
  10. 02 Apr, 2024 1 commit
  11. 29 Mar, 2024 1 commit
  12. 13 Mar, 2024 2 commits
  13. 11 Mar, 2024 2 commits
  14. 06 Mar, 2024 1 commit
  15. 05 Mar, 2024 1 commit
  16. 21 Feb, 2024 3 commits
  17. 05 Feb, 2024 1 commit
  18. 01 Feb, 2024 3 commits
  19. 30 Jan, 2024 1 commit
    • Aarni Koskela's avatar
      Ruff fixes (#984) · 706ec24d
      Aarni Koskela authored
      
      
      * Adjust Ruff configuration
      
      * do not autofix always
      * be less strict around tests and benchmarks
      * adjust ignores for now
      
      * Ruff: autofix I and F401
      
      * Apply ruff autofixes
      
      * Fix RUF013 complaint
      
      * Fix mutable default in replace_linear
      
      * Don't use bare except
      
      * Wrap bitsandbytes.__main__ entrypoint in function; fix "sensible" typo
      
      * Fix ruff B008 (function call in arguments)
      
      * Add ruff noqas as suitable
      
      * Fix RUF005 (splat instead of concatenating)
      
      * Fix B018 (useless expression)
      
      * Add pre-commit configuration + GitHub Actions lint workflow
      
      * Fix unused `e` in bitsandbytes/__main__.py
      
      * fix merge conflict resolution error
      
      * run pre-commit hook
      
      ---------
      Co-authored-by: default avatarTitus <9048635+Titus-von-Koeller@users.noreply.github.com>
      706ec24d
  20. 24 Jan, 2024 1 commit
  21. 17 Jan, 2024 1 commit
    • Benjamin Warner's avatar
      Initial FSDP Support for QLoRA Finetuning (#970) · dcfb6f81
      Benjamin Warner authored
      
      
      This PR adds initial FSDP support for training QLoRA models. It enables basic FSDP and CPU Offload support, with low memory training via FSDP.sync_module_states option unsupported.
      
      This PR builds off of #840 commit 8278fca and BNB FSDP by @TimDettmers and @Titus-von-Koeller.
      
      An example of using this PR to finetune QLoRA models with FSDP can be found in the demo repo: AnswerDotAi/fsdp_qlora.
      
      * Minimal changes for fp32 4bit storage from BNB commit 8278fca
      
      * Params4bit with selectable storage dtype
      
      * possible fix for double quantizing linear weight & quant storage dtype
      
      * minor fixes in Params4bit for peft tests
      
      * remove redundant
      
      * add float16
      
      * update test
      
      * Remove float16 quant cast as there are fp32, bf16, & fp16 quant kernels
      
      ---------
      Co-authored-by: default avatarKerem Turgutlu <keremturgutlu@gmail.com>
      dcfb6f81
  22. 08 Jan, 2024 1 commit
  23. 03 Dec, 2023 1 commit
  24. 10 Nov, 2023 1 commit
  25. 09 Nov, 2023 1 commit
  26. 08 Nov, 2023 1 commit
  27. 02 Nov, 2023 5 commits
  28. 04 Aug, 2023 1 commit