1. 24 May, 2025 1 commit
    • Matthew Douglas's avatar
      General cleanup & test improvements (#1646) · 503d243e
      Matthew Douglas authored
      * General cleanup & test improvements
      
      * Tests: WA numpy 2 compat issue for torch<2.3
      
      * Tests: update aarch64 cpu min torch version
      
      * Tests: update aarch64 cpu min torch version
      
      * Tests: update aarch64 cpu min torch version
      503d243e
  2. 13 May, 2025 1 commit
  3. 28 Apr, 2025 1 commit
  4. 22 Apr, 2025 1 commit
    • Matthew Douglas's avatar
      Updates for device agnosticism (#1601) · 1088ec52
      Matthew Douglas authored
      * Include device support tags for transformers multi-backend compatability; add xpu() and cpu() to Params4bit
      
      * Make test suite more device-agnostic
      
      * Additional device agnostic tests
      
      * Additional device agnosticism for tests
      
      * Add BNB_TEST_DEVICE env var to manually select device for unit tests
      
      * Include device support tags for transformers multi-backend compatability; add xpu() and cpu() to Params4bit
      
      * Make test suite more device-agnostic
      
      * Additional device agnostic tests
      
      * Additional device agnosticism for tests
      
      * Add BNB_TEST_DEVICE env var to manually select device for unit tests
      
      * Small bugfix for int8 test
      
      * Exclude backward() from code coverage reports
      
      * Params4bit: don't try to quantize when moving to meta device
      1088ec52
  5. 27 Mar, 2025 1 commit
    • Matthew Douglas's avatar
      Test cleanup (#1576) · 8b6fe9ee
      Matthew Douglas authored
      * Testing cleanup
      
      * More test cleanup
      
      * Additional deprecations/removals.
      
      * Skip benchmark, deprecated, slow tests by default
      8b6fe9ee
  6. 25 Mar, 2025 1 commit
    • Matthew Douglas's avatar
      PyTorch Custom Operator Integration (#1544) · e82f72b3
      Matthew Douglas authored
      
      
      * Sketch out first custom op registration
      
      * Add note
      
      * Initial int8 op registration
      
      * Cleanup some deprecated functions.
      
      * Int8 ops updates; tests
      
      * Implement 4bit quant/dequant ops
      
      * Fix nested quant
      
      * cleanup
      
      * Test improvements
      
      * Clean up and improve tests
      
      * Add higher level custom op for int8 matmul + dequant + bias
      
      * Add gemv 4bit custom op
      
      * Cleanup
      
      * Implement out kwarg overloads for custom ops
      
      * Update PyTorch minimum to 2.1
      
      * Deprecation updates
      
      * Deprecation updates
      
      * Cleanup; rename int8_linear_dequant -> int8_scaled_mm
      
      * Bump min pytorch to 2.2
      
      * cleanup
      
      * Test reorganization
      
      * Remove deprecated supports_igemmlt
      
      * More cleanup
      
      * Cleanup obsolete C++/CUDA code
      
      * Cleanup
      
      * Create 'default' backend for fallback op implementations; initial CPU nf4 work
      
      * Stub out for multi-platform
      
      * Fix serialization tests for torch>=2.6.0
      
      * Add example for torch.compile e2e inference
      
      * Test update
      
      ---------
      Co-authored-by: default avatarTitus von Koeller <9048635+Titus-von-Koeller@users.noreply.github.com>
      e82f72b3