Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
bitsandbytes
Commits
8645d1f7
Commit
8645d1f7
authored
Mar 29, 2023
by
Tim Dettmers
Browse files
Added normal quant.
parent
69810521
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
80 additions
and
14 deletions
+80
-14
bitsandbytes/functional.py
bitsandbytes/functional.py
+71
-5
csrc/kernels.cu
csrc/kernels.cu
+2
-2
csrc/ops.cu
csrc/ops.cu
+2
-2
tests/test_functional.py
tests/test_functional.py
+5
-5
No files found.
bitsandbytes/functional.py
View file @
8645d1f7
...
...
@@ -9,6 +9,8 @@ import random
import
torch
import
itertools
import
math
import
scipy.stats
import
numpy
as
np
from
functools
import
reduce
# Required in Python 3
from
typing
import
Tuple
...
...
@@ -152,6 +154,70 @@ def create_linear_map(signed=True, total_bits=8, add_zero=True):
#return torch.Tensor(values[:l].tolist() + [-1e-6]*((gap//2)-1) + [0]*2 + [1e-6]*((gap//2)-1) + values[l:].tolist())
return
torch
.
Tensor
(
values
[:
l
].
tolist
()
+
[
0
]
*
gap
+
values
[
l
:].
tolist
())
def
custom_map
(
seed
=
0
,
scale
=
0.01
):
v
=
[
12
,
10
,
8
,
6
,
3
,
2
,
1
]
# 16-bit 7B 22.33, 4-bit best 22.88, FP4 23.25, 4-bit 95 22.97, 4-bit evo 22.45
# 16-bit 13B 70.35, 4-bit best 67.16, FP4 100.78, 4-bit-95 69.39, 4-bit evo 70.48
# 13B 100 steps:
# - 4-bit evo: 86.02
# - 4-bit norm: 78.73
# - 4-bit FP4:
# - 16-bit:
# interval search on normal distribution
#v = [3.090232306167813, 1.4589770349449647, 1.064410327932115, 0.7896806653244509, 0.5646884166925807, 0.3653406435875121, 0.17964844284441311] # 0.999 26.5
#v = [2.3263478740408408, 1.4050715603096329, 1.0364333894937898, 0.7721932141886848, 0.5533847195556727, 0.3584587932511938, 0.1763741647808615] # 0.99 24.99
#v = [1.6448536269514722, 1.2040469600267016, 0.9208229763683788, 0.6971414348463417, 0.5039653672113453, 0.3280721075316511, 0.16184416680396213] # 0.95 24.53 22.97
#v = [1.4050715603096329, 1.0803193408149558, 0.8416212335729143, 0.643345405392917, 0.4676987991145084, 0.3054807880993974, 0.1509692154967774] # 0.92 24.81
#v = [1.2815515655446004, 1.0062699858608395, 0.7916386077433746, 0.6084981344998837, 0.4438613119262478, 0.29050677112339396, 0.14372923370582416] # 0.9 24.68
#v = [1.8807936081512509, 1.2980047163986055, 0.9769954022693226, 0.7341502955472268, 0.5285136765472481, 0.343225833559403, 0.16910470304375366] # 0.97 25.03
#v = [1.7506860712521692, 1.2496468758017434, 0.9485350408266378, 0.7155233557034365, 0.5162006366043174, 0.3356393360829622, 0.16547334454641704] # 0.96 24.85 23.01
#v = [1.5547735945968535, 1.1608220210715001, 0.893800631179489, 0.6789921163940618, 0.4918050830048072, 0.3205236191093902, 0.15821711945563585] # 0.94 24.47
#v = [1.475791028179171, 1.1196635980209986, 0.8674156943957149, 0.6610637542614526, 0.4797170937629045, 0.31299335020578195, 0.15459215234139795] # 0.93 24.85
#v = [1.5981931399228175, 1.1821583959486879, 0.9072289939325966, 0.6880384454306778, 0.49787602226482025, 0.3242955535308664, 0.160030379970179] # 0.945 24.287
##v = [1.6164363711150211, 1.1908453913294612, 0.9126463450304729, 0.6916727602238111, 0.5003095327012462, 0.3258056171348078, 0.1607558311941979] # 0.947 24.293
#v = [1.6072478919002173, 1.1864907014855421, 0.9099343314196248, 0.6898544638558411, 0.4990924080314459, 0.32505049268156666, 0.16039309503073892] # 0.946 24.207
#v = [1.6118251211466303, 1.188665228776879, 0.9112895004060624, 0.690763326564427, 0.4997008778346997, 0.3254280317127771, 0.16057446047146948] # 0.9465 24.30
#v = [1.6027040905517569, 1.184321770169049, 0.9085808314549837, 0.6889461706317986, 0.4984841229538408, 0.32467299997597887, 0.1602117348657326] # 0.9455 24.293
#v = [1.6072478919002173, 1.1864907014855421, 0.9099343314196248, 0.6898544638558411, 0.4990924080314459, 0.32505049268156666, 0.16039309503073892] # 0.946 24.37 22.88
# 7B evo start
#v = [1.62129629, 1.18870191, 0.90848106, 0.69108646, 0.50515268, 0.34927819905, 0.14122701] # 22.06
#v = [1.6143079205628337, 1.1888081407660314, 0.8990131955745421, 0.694373759813679, 0.5083033257326773, 0.3452499746844963, 0.1148939728228951]
#v = [1.614442766030303, 1.189401918639665, 0.8998038168964273, 0.6953094818279475, 0.5073264599048384, 0.3449003790823619, 0.11428378427205564]
# 13B evo start
#v = [1.6077535089716468, 1.1914902148179205, 0.8999752421085561, 0.6967904489387543, 0.4949093928311768, 0.30920472033044544, 0.15391602735952042]
#v = [1.586363722436466, 1.202610827188916, 0.9003332576346587, 0.6904888715206972, 0.49490974688233724, 0.2971151461329376, 0.15683230810738283]
v
=
[
1.5842247437829478
,
1.2037228884260156
,
0.900369059187269
,
0.6898587137788914
,
0.4949097822874533
,
0.2959061887131868
,
0.15712393618216908
]
# mean evo 7B + 13B
#v = [1.5993337549066253, 1.1965624035328402, 0.9000864380418481, 0.6925840978034195, 0.5011181210961458, 0.32040328389777434, 0.13570386022711237]
# theoretically optiomal (0.93333)
# v = [1.501085946044025, 1.1331700302595604, 0.8761428492468408, 0.6670160135425023, 0.48373855304610314, 0.3155014472579608, 0.15580024666388428] # 0.9333333333333333
if
seed
>
0
:
v
=
np
.
array
(
v
)
np
.
random
.
seed
(
seed
)
v
+=
np
.
random
.
randn
(
7
)
*
scale
print
(
v
.
tolist
())
#v[0] += (np.random.randn(1)*0.001)[0]
#v[-1] += (np.random.randn(1)*0.001)[0]
#print(v[0], v[-1])
v
=
v
.
tolist
()
values
=
v
+
[
0
]
*
(
256
-
14
)
+
\
v
[::
-
1
]
values
=
torch
.
Tensor
(
values
)
values
[
0
:
7
]
*=
-
1
values
=
values
.
sort
().
values
values
/=
values
.
max
()
assert
values
.
numel
()
==
256
return
values
def
create_fp8_map
(
signed
=
True
,
exponent_bits
=
5
,
precision_bits
=
2
,
total_bits
=
8
):
e
=
exponent_bits
...
...
@@ -168,7 +234,7 @@ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8)
values
=
[]
lst
=
list
(
itertools
.
product
([
0
,
1
],
repeat
=
precision_bits
))
#for ev in evalues:
bias
=
2
**
(
exponent_bits
-
1
)
+
1
bias
=
2
**
(
exponent_bits
-
1
)
-
1
for
evalue
in
range
(
2
**
(
exponent_bits
)):
for
bit_pattern
in
lst
:
value
=
(
1
if
evalue
!=
0
else
0
)
...
...
@@ -176,10 +242,10 @@ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8)
value
+=
pval
*
(
2
**-
(
i
+
1
))
if
evalue
==
0
:
# subnormals
value
=
value
*
2
**-
(
bias
)
value
=
value
*
2
**-
(
bias
-
1
)
else
:
# normals
value
=
value
*
2
**-
(
evalue
-
bias
-
1
)
value
=
value
*
2
**-
(
evalue
-
bias
-
2
)
values
.
append
(
value
)
if
signed
:
values
.
append
(
-
value
)
...
...
@@ -502,7 +568,7 @@ def quantize_blockwise(A: Tensor, code: Tensor = None, absmax: Tensor = None, ra
out
=
torch
.
zeros_like
(
A
,
dtype
=
torch
.
uint8
)
if
A
.
device
.
type
!=
'cpu'
:
assert
blocksize
in
[
4096
,
2048
,
1024
,
512
,
256
,
128
,
64
]
assert
blocksize
in
[
4096
,
2048
,
1024
,
512
,
256
,
128
,
64
,
32
]
cblocksize
=
ct
.
c_int32
(
blocksize
)
prev_device
=
pre_call
(
A
.
device
)
code
=
code
.
to
(
A
.
device
)
...
...
@@ -585,7 +651,7 @@ def dequantize_blockwise(
if
A
.
device
.
type
!=
'cpu'
:
device
=
pre_call
(
A
.
device
)
code
=
code
.
to
(
A
.
device
)
if
blocksize
not
in
[
2048
,
4096
,
1024
,
512
,
256
,
128
,
64
]:
if
blocksize
not
in
[
2048
,
4096
,
1024
,
512
,
256
,
128
,
64
,
32
]:
raise
ValueError
(
f
"The blockwise of
{
blocksize
}
is not supported. Supported values: [2048, 4096, 1024, 512, 256, 128, 64]"
)
is_on_gpu
([
A
,
absmax
,
out
])
if
out
.
dtype
==
torch
.
float32
:
...
...
csrc/kernels.cu
View file @
8645d1f7
...
...
@@ -2953,6 +2953,8 @@ template __global__ void kQuantizeBlockwise<half, 128, 2, 0, 0>(float * code, ha
template
__global__
void
kQuantizeBlockwise
<
float
,
128
,
2
,
0
,
0
>(
float
*
code
,
float
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
template
__global__
void
kQuantizeBlockwise
<
half
,
64
,
2
,
0
,
0
>(
float
*
code
,
half
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
template
__global__
void
kQuantizeBlockwise
<
float
,
64
,
2
,
0
,
0
>(
float
*
code
,
float
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
template
__global__
void
kQuantizeBlockwise
<
half
,
32
,
1
,
0
,
0
>(
float
*
code
,
half
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
template
__global__
void
kQuantizeBlockwise
<
float
,
32
,
1
,
0
,
0
>(
float
*
code
,
float
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
template
__global__
void
kQuantizeBlockwise
<
half
,
4096
,
4
,
0
,
1
>(
float
*
code
,
half
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
template
__global__
void
kQuantizeBlockwise
<
float
,
4096
,
4
,
0
,
1
>(
float
*
code
,
float
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
...
...
@@ -2968,8 +2970,6 @@ template __global__ void kQuantizeBlockwise<half, 128, 2, 0, 1>(float * code, ha
template
__global__
void
kQuantizeBlockwise
<
float
,
128
,
2
,
0
,
1
>(
float
*
code
,
float
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
template
__global__
void
kQuantizeBlockwise
<
half
,
64
,
2
,
0
,
1
>(
float
*
code
,
half
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
template
__global__
void
kQuantizeBlockwise
<
float
,
64
,
2
,
0
,
1
>(
float
*
code
,
float
*
__restrict__
const
A
,
float
*
absmax
,
unsigned
char
*
out
,
float
*
__restrict__
const
rand
,
const
int
rand_offset
,
const
int
n
);
//template __global__ void kQuantizeBlockwise<half, 64, 1, 0, 1>(float * code, half * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n);
//template __global__ void kQuantizeBlockwise<float, 64, 1, 0, 1>(float * code, float * __restrict__ const A, float *absmax, unsigned char *out, float * __restrict__ const rand, const int rand_offset, const int n);
template
__global__
void
kDequantizeBlockwise
<
half
,
512
,
64
,
8
,
1
>(
float
*
code
,
unsigned
char
*
A
,
float
*
absmax
,
half
*
out
,
const
int
blocksize
,
const
int
n
);
template
__global__
void
kDequantizeBlockwise
<
float
,
512
,
64
,
8
,
1
>(
float
*
code
,
unsigned
char
*
A
,
float
*
absmax
,
float
*
out
,
const
int
blocksize
,
const
int
n
);
...
...
csrc/ops.cu
View file @
8645d1f7
...
...
@@ -71,8 +71,8 @@ template <typename T, int STOCHASTIC, int FP4> void quantizeBlockwise(float * co
kQuantizeBlockwise
<
T
,
128
,
2
,
0
,
FP4
><<<
num_blocks
,
64
>>>
(
code
,
A
,
absmax
,
out
,
rand
,
rand_offset
,
n
);
else
if
(
blocksize
==
64
)
kQuantizeBlockwise
<
T
,
64
,
2
,
0
,
FP4
><<<
num_blocks
,
32
>>>
(
code
,
A
,
absmax
,
out
,
rand
,
rand_offset
,
n
);
//
else if(blocksize == 32)
//
kQuantizeBlockwise<T, 32, 1, 0, FP4><<<num_blocks, 32>>>(code, A, absmax, out, rand, rand_offset, n);
else
if
(
blocksize
==
32
and
FP4
==
0
)
kQuantizeBlockwise
<
T
,
32
,
1
,
0
,
FP4
><<<
num_blocks
,
32
>>>
(
code
,
A
,
absmax
,
out
,
rand
,
rand_offset
,
n
);
CUDA_CHECK_RETURN
(
cudaPeekAtLastError
());
...
...
tests/test_functional.py
View file @
8645d1f7
...
...
@@ -152,7 +152,7 @@ def test_dynamic_quantization():
def
test_dynamic_blockwise_quantization
():
#print('')
for
blocksize
in
[
4096
,
2048
,
1024
,
512
,
256
,
128
,
64
]:
for
blocksize
in
[
4096
,
2048
,
1024
,
512
,
256
,
128
,
64
,
32
]:
diffs
=
[]
reldiffs
=
[]
for
i
in
range
(
100
):
...
...
@@ -167,8 +167,8 @@ def test_dynamic_blockwise_quantization():
relerr
=
sum
(
reldiffs
)
/
len
(
reldiffs
)
assert
abserr
<
0.011
assert
relerr
<
0.018
#
print('randn', blocksize, sum(diffs)/len(diffs))
#
print('randn', blocksize, sum(reldiffs)/len(reldiffs))
print
(
'randn'
,
blocksize
,
sum
(
diffs
)
/
len
(
diffs
))
print
(
'randn'
,
blocksize
,
sum
(
reldiffs
)
/
len
(
reldiffs
))
diffs
=
[]
for
i
in
range
(
100
):
...
...
@@ -184,8 +184,8 @@ def test_dynamic_blockwise_quantization():
relerr
=
sum
(
reldiffs
)
/
len
(
reldiffs
)
assert
abserr
<
0.0035
assert
relerr
<
0.015
#
print('rand', blocksize, sum(diffs)/len(diffs))
#
print('rand', blocksize, sum(reldiffs)/len(reldiffs))
print
(
'rand'
,
blocksize
,
sum
(
diffs
)
/
len
(
diffs
))
print
(
'rand'
,
blocksize
,
sum
(
reldiffs
)
/
len
(
reldiffs
))
def
test_dynamic_blockwise_stochastic_quantization
():
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment