Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
bitsandbytes
Commits
7a117e44
Commit
7a117e44
authored
Sep 13, 2023
by
Ruslan Svirschevski
Browse files
cleanup1
parent
6cf0f05d
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
14 additions
and
11 deletions
+14
-11
bitsandbytes/functional.py
bitsandbytes/functional.py
+12
-10
bitsandbytes/nn/modules.py
bitsandbytes/nn/modules.py
+2
-1
No files found.
bitsandbytes/functional.py
View file @
7a117e44
...
@@ -593,6 +593,8 @@ class QuantState:
...
@@ -593,6 +593,8 @@ class QuantState:
# unpacking tensor with non-tensor components
# unpacking tensor with non-tensor components
qs_key
=
[
k
for
k
,
v
in
qs_dict
.
items
()
if
"quant_state"
in
k
and
isinstance
(
v
,
torch
.
Tensor
)]
qs_key
=
[
k
for
k
,
v
in
qs_dict
.
items
()
if
"quant_state"
in
k
and
isinstance
(
v
,
torch
.
Tensor
)]
assert
len
(
qs_key
)
==
1
or
not
qs_key
and
'quant_type'
in
qs_dict
,
\
f
"`qs_dict` must contain packed quant_state items, or be unpacked. Found keys:
{
tuple
(
qs_dict
.
keys
())
}
"
if
len
(
qs_key
)
==
1
:
if
len
(
qs_key
)
==
1
:
qs_key
=
qs_key
[
0
]
qs_key
=
qs_key
[
0
]
assert
'bitsandbytes__nf4'
in
qs_key
or
'bitsandbytes__fp4'
in
qs_key
,
\
assert
'bitsandbytes__nf4'
in
qs_key
or
'bitsandbytes__fp4'
in
qs_key
,
\
...
@@ -605,22 +607,22 @@ class QuantState:
...
@@ -605,22 +607,22 @@ class QuantState:
offset
=
torch
.
tensor
(
float
(
qs_dict
[
'nested_offset'
])).
to
(
device
)
offset
=
torch
.
tensor
(
float
(
qs_dict
[
'nested_offset'
])).
to
(
device
)
state2
=
cls
(
state2
=
cls
(
absmax
=
qs_dict
[
'nested_absmax'
].
to
(
device
),
absmax
=
qs_dict
[
'nested_absmax'
].
to
(
device
),
code
=
qs_dict
[
'nested_code'
].
to
(
device
),
blocksize
=
qs_dict
[
'nested_blocksize'
],
blocksize
=
qs_dict
[
'nested_blocksize'
],
code
=
qs_dict
[
'nested_code'
].
to
(
device
),
dtype
=
getattr
(
torch
,
qs_dict
[
'nested_dtype'
]),
dtype
=
getattr
(
torch
,
qs_dict
[
'nested_dtype'
]),
)
)
else
:
else
:
offset
,
state2
=
None
,
None
offset
,
state2
=
None
,
None
quant_state
=
cls
(
quant_state
=
cls
(
quant_type
=
qs_dict
[
'quant_type'
],
absmax
=
qs_dict
[
'absmax'
].
to
(
device
),
absmax
=
qs_dict
[
'absmax'
].
to
(
device
),
shape
=
torch
.
Size
(
qs_dict
[
'shape'
]),
dtype
=
getattr
(
torch
,
qs_dict
[
'dtype'
]),
blocksize
=
qs_dict
[
'blocksize'
],
blocksize
=
qs_dict
[
'blocksize'
],
code
=
qs_dict
[
'code'
].
to
(
device
),
dtype
=
getattr
(
torch
,
qs_dict
[
'dtype'
]),
shape
=
torch
.
Size
(
qs_dict
[
'shape'
]),
offset
=
offset
,
offset
=
offset
,
state2
=
state2
,
state2
=
state2
,
quant_type
=
qs_dict
[
'quant_type'
],
code
=
qs_dict
[
'code'
].
to
(
device
),
)
)
return
quant_state
return
quant_state
...
@@ -630,20 +632,20 @@ class QuantState:
...
@@ -630,20 +632,20 @@ class QuantState:
param: packed -- returns dict[str, torch.Tensor] for state_dict
param: packed -- returns dict[str, torch.Tensor] for state_dict
"""
"""
qs_dict
=
{
qs_dict
=
{
'quant_type'
:
self
.
quant_type
,
'absmax'
:
self
.
absmax
,
'absmax'
:
self
.
absmax
,
'blocksize'
:
self
.
blocksize
,
'code'
:
self
.
code
,
'code'
:
self
.
code
,
'shape'
:
tuple
(
self
.
shape
),
'dtype'
:
str
(
self
.
dtype
).
strip
(
'torch.'
),
'dtype'
:
str
(
self
.
dtype
).
strip
(
'torch.'
),
'blocksize'
:
self
.
blocksize
,
'shape'
:
tuple
(
self
.
shape
)
if
self
.
nested
else
None
,
'quant_type'
:
self
.
quant_type
,
}
}
if
self
.
nested
:
if
self
.
nested
:
qs_dict
.
update
({
qs_dict
.
update
({
'nested_absmax'
:
self
.
state2
.
absmax
,
'nested_absmax'
:
self
.
state2
.
absmax
,
'nested_code'
:
self
.
state2
.
code
,
'nested_offset'
:
self
.
offset
.
item
(),
'nested_blocksize'
:
self
.
state2
.
blocksize
,
'nested_blocksize'
:
self
.
state2
.
blocksize
,
'nested_code'
:
self
.
state2
.
code
,
'nested_dtype'
:
str
(
self
.
state2
.
dtype
).
strip
(
'torch.'
),
'nested_dtype'
:
str
(
self
.
state2
.
dtype
).
strip
(
'torch.'
),
'nested_offset'
:
self
.
offset
.
item
(),
})
})
if
not
packed
:
if
not
packed
:
return
qs_dict
return
qs_dict
...
...
bitsandbytes/nn/modules.py
View file @
7a117e44
...
@@ -156,7 +156,8 @@ class Params4bit(torch.nn.Parameter):
...
@@ -156,7 +156,8 @@ class Params4bit(torch.nn.Parameter):
@
classmethod
@
classmethod
def
from_prequantized
(
cls
,
quantized_stats
,
data
=
None
,
requires_grad
=
False
,
device
=
'cuda'
,
**
kwargs
):
def
from_prequantized
(
cls
,
quantized_stats
,
data
=
None
,
requires_grad
=
False
,
device
=
'cuda'
,
**
kwargs
):
if
data
is
None
:
if
data
is
None
:
data
=
quantized_stats
.
pop
(
'weight'
)
weight_key
=
[
k
for
k
in
quantized_stats
if
k
.
endswith
(
".weight"
)][
0
]
data
=
quantized_stats
.
pop
(
weight_key
)
self
=
torch
.
Tensor
.
_make_subclass
(
cls
,
data
.
to
(
device
))
self
=
torch
.
Tensor
.
_make_subclass
(
cls
,
data
.
to
(
device
))
self
.
requires_grad
=
requires_grad
self
.
requires_grad
=
requires_grad
self
.
quant_state
=
QuantState
.
from_dict
(
qs_dict
=
quantized_stats
,
device
=
device
)
self
.
quant_state
=
QuantState
.
from_dict
(
qs_dict
=
quantized_stats
,
device
=
device
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment