"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "1ec28a2c770546e4483a5109c4e98d6e1b298968"
Commit 3cff6795 authored by Tim Dettmers's avatar Tim Dettmers
Browse files

Merge branch 'main' of github.com:facebookresearch/bitsandbytes into 0.26.0

parents 108cf9fc 262350c1
...@@ -15,8 +15,8 @@ from bitsandbytes.optim import GlobalOptimManager ...@@ -15,8 +15,8 @@ from bitsandbytes.optim import GlobalOptimManager
class StableEmbedding(torch.nn.Embedding): class StableEmbedding(torch.nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None, def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False, max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
sparse: bool = True, _weight: Optional[Tensor] = None) -> None: sparse: bool = False, _weight: Optional[Tensor] = None) -> None:
super(StableEmbedding, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, False, _weight) super(StableEmbedding, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight)
self.norm = torch.nn.LayerNorm(embedding_dim) self.norm = torch.nn.LayerNorm(embedding_dim)
GlobalOptimManager.get_instance().register_parameters(self.weight) GlobalOptimManager.get_instance().register_parameters(self.weight)
GlobalOptimManager.get_instance().override_config(self.weight, 'optim_bits', 32) GlobalOptimManager.get_instance().override_config(self.weight, 'optim_bits', 32)
......
...@@ -2,7 +2,12 @@ ...@@ -2,7 +2,12 @@
# #
# This source code is licensed under the MIT license found in the # This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree. # LICENSE file in the root directory of this source tree.
import math
import os
import torch import torch
import torch.distributed as dist
from bitsandbytes.optim.optimizer import Optimizer2State from bitsandbytes.optim.optimizer import Optimizer2State
import bitsandbytes.functional as F import bitsandbytes.functional as F
...@@ -219,9 +224,9 @@ class AnalysisAdam(torch.optim.Optimizer): ...@@ -219,9 +224,9 @@ class AnalysisAdam(torch.optim.Optimizer):
if self.savedir != '' and state['step'] % 100 == 0: if self.savedir != '' and state['step'] % 100 == 0:
if not os.path.exists(self.savedir): os.makedirs(self.savedir) if not os.path.exists(self.savedir): os.makedirs(self.savedir)
shapestr = '_'.join([str(dim) for dim in p_data_fp32.shape]) shapestr = '_'.join([str(dim) for dim in p_data_fp32.shape])
pathe = join(self.savedir, f'{p_id}_{shapestr}_abserr.pkl') pathe = os.path.join(self.savedir, f'{p_id}_{shapestr}_abserr.pkl')
pathrele = join(self.savedir, f'{p_id}_{shapestr}_relerr.pkl') pathrele = os.path.join(self.savedir, f'{p_id}_{shapestr}_relerr.pkl')
pathcounts = join(self.savedir, f'{p_id}_{shapestr}_counts.pkl') pathcounts = os.path.join(self.savedir, f'{p_id}_{shapestr}_counts.pkl')
torch.save(e, pathe) torch.save(e, pathe)
torch.save(rele, pathrele) torch.save(rele, pathrele)
torch.save(counts, pathcounts) torch.save(counts, pathcounts)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment