"docs/git@developer.sourcefind.cn:OpenDAS/torchaudio.git" did not exist on "38cf5b7aecc9cd1ac020b4b0008dad8fa546c19c"
Commit 28a9313d authored by justheuristic's avatar justheuristic
Browse files

cast before allclose

parent 95dafc64
...@@ -541,7 +541,7 @@ def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward): ...@@ -541,7 +541,7 @@ def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward):
mlp = MLP8bit( mlp = MLP8bit(
32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward 32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward
) )
w1, w2 = mlp.fc1.weight.clone(), mlp.fc2.weight.clone() # note: we grad original weights before quantization, w1, w2 = mlp.fc1.weight.clone().cuda(), mlp.fc2.weight.clone().cuda() # grab weights before quantization,
mlp = mlp.cuda().half() # and this line triggers quantization mlp = mlp.cuda().half() # and this line triggers quantization
for i in range(100): for i in range(100):
...@@ -567,7 +567,7 @@ def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward): ...@@ -567,7 +567,7 @@ def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward):
mlp.zero_grad() mlp.zero_grad()
(o1 * grad_proj).sum().backward() (o1 * grad_proj).sum().backward()
grad_ref = grad_proj.flatten(2) @ w2.to(grad_proj.device) @ w1.to(grad_proj.device) grad_ref = grad_proj.flatten(2) @ w2.to() @ w1.to(grad_proj.device)
assert torch.allclose(b1.grad, grad_ref) assert torch.allclose(b1.grad, grad_ref)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment