test_triton.py 2.36 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
import pytest
import torch

Mitchell Wortsman's avatar
Mitchell Wortsman committed
4
5
from bitsandbytes.nn.triton_based_modules import SwitchBackLinear
from bitsandbytes.nn import Linear8bitLt
Tim Dettmers's avatar
Tim Dettmers committed
6
7


8
@pytest.mark.skipif(not torch.cuda.is_available() or not torch.cuda.get_device_capability()[0] >= 8, reason="This test requires a GPU with compute capability 8.0 or higher.")
Mitchell Wortsman's avatar
Mitchell Wortsman committed
9
10
@pytest.mark.parametrize("vectorrize", [False, True])
def test_switchback(vectorrize):
Tim Dettmers's avatar
Tim Dettmers committed
11
12
13
14
    for dim in [83, 17, 128]:
        for batch in [13, 128, 256]:

            standard = torch.nn.Linear(dim, 4 * dim).cuda().half()
Mitchell Wortsman's avatar
Mitchell Wortsman committed
15
16
17
            print('vectorrize', vectorrize)
            switchback = SwitchBackLinear(dim, 4 * dim, vectorize=vectorrize).cuda().half()
            baseline = Linear8bitLt(dim, 4 * dim).cuda().half()
Tim Dettmers's avatar
Tim Dettmers committed
18
19
            switchback.weight.data.copy_(standard.weight)
            switchback.bias.data.copy_(standard.bias)
Mitchell Wortsman's avatar
Mitchell Wortsman committed
20
21
22
23
24
25
            baseline.weight.data.copy_(standard.weight)
            baseline.bias.data.copy_(standard.bias)

            x1 = torch.randn(batch, dim).cuda().half().requires_grad_(True)
            x2 = x1.clone().detach().requires_grad_(True)
            x3 = x1.clone().detach().requires_grad_(True)
Tim Dettmers's avatar
Tim Dettmers committed
26

Mitchell Wortsman's avatar
Mitchell Wortsman committed
27
28
            out_standard = standard(x1)
            (2**10 * out_standard.abs().mean()).backward()
Tim Dettmers's avatar
Tim Dettmers committed
29

30
            print(x2.dtype)
Mitchell Wortsman's avatar
Mitchell Wortsman committed
31
32
            out_sb = switchback(x2)
            (2**10 * out_sb.abs().mean()).backward()
Tim Dettmers's avatar
Tim Dettmers committed
33

Mitchell Wortsman's avatar
Mitchell Wortsman committed
34
35
            out_baseline = baseline(x3)
            (2**10 * out_baseline.abs().mean()).backward()
Tim Dettmers's avatar
Tim Dettmers committed
36

Mitchell Wortsman's avatar
Mitchell Wortsman committed
37
38
39
40
            err_sb = (out_standard - out_sb).abs().mean()
            err_baseline = (out_standard - out_baseline).abs().mean()
            print('OUT', err_sb, err_baseline)
            assert err_sb < 2 * err_baseline
Tim Dettmers's avatar
Tim Dettmers committed
41

Mitchell Wortsman's avatar
Mitchell Wortsman committed
42
43
            err_sb = (standard.bias.grad - switchback.bias.grad).abs().mean()
            err_baseline = (standard.bias.grad - baseline.bias.grad).abs().mean()
Tim Dettmers's avatar
Tim Dettmers committed
44

Mitchell Wortsman's avatar
Mitchell Wortsman committed
45
46
            print('GW2', err_sb,  err_baseline)
            assert err_sb < 2 * err_baseline
Tim Dettmers's avatar
Tim Dettmers committed
47

Mitchell Wortsman's avatar
Mitchell Wortsman committed
48
49
            err_sb = (standard.weight.grad - switchback.weight.grad).abs().mean()
            err_baseline = (standard.weight.grad - baseline.weight.grad).abs().mean()
Tim Dettmers's avatar
Tim Dettmers committed
50

Mitchell Wortsman's avatar
Mitchell Wortsman committed
51
52
            print('GW1', err_sb,  err_baseline)
            assert err_sb < 2 * err_baseline
Tim Dettmers's avatar
Tim Dettmers committed
53

Mitchell Wortsman's avatar
Mitchell Wortsman committed
54
55
            err_sb = (x1.grad - x2.grad).abs().mean()
            err_baseline = (x1.grad - x3.grad).abs().mean()
Tim Dettmers's avatar
Tim Dettmers committed
56

Mitchell Wortsman's avatar
Mitchell Wortsman committed
57
58
            print('GX1', err_sb, err_baseline)
            assert err_sb < 2 * err_baseline
Tim Dettmers's avatar
Tim Dettmers committed
59