speed_benchmark.py 4.91 KB
Newer Older
Mitchell Wortsman's avatar
Mitchell Wortsman committed
1
2
3
4
5
6
import json

import time
import torch
import torch.nn as nn

7
8
9
10
11
from bitsandbytes.triton.quantize_rowwise import quantize_rowwise
from bitsandbytes.triton.quantize_columnwise_and_transpose import quantize_columnwise_and_transpose
from bitsandbytes.triton.int8_matmul_rowwise_dequantize import int8_matmul_rowwise_dequantize
from bitsandbytes.triton.quantize_global import quantize_global, quantize_global_transpose
from bitsandbytes.triton.int8_matmul_mixed_dequanitze import int8_matmul_mixed_dequanitze
Mitchell Wortsman's avatar
Mitchell Wortsman committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

# KNOW ISSUE: need to optimize "w_quantize_colwise_transpose" when embeddim is too large.

def get_time(k, fn, info_dict):

    for _ in range(repeat // 2):
       fn()

    torch.cuda.synchronize()
    start = time.time()
    for _ in range(repeat):
       fn()

    torch.cuda.synchronize()
    end = time.time()
    ms = (end - start) / repeat * 1000
    print(f"time {k}: {ms:.3f} ms")
    info_dict[k] = ms

if __name__ == '__main__':
    torch.manual_seed(0)
    wm = 4
    for dim in [1024, 1280, 1408, 1664, 2048, 4096]:
        # note "batch_size" is actually "batch_size * embed_dim", which is why it's large
        for batch_size in [256*32, 256*64, 256*128, 256*256, 256*512]:
            
            # switch switches dim_in and dim_out
            for switch in [False, True]:

                # hparams
                repeat = 64
                batch_size = batch_size
                dim_out = dim * wm
                dim_in = dim
                if switch:
                    dim_out = dim
                    dim_in = wm * dim

                dim_in = round(dim_in)
                dim_out = round(dim_out)

                # simulate forward pass
                x = torch.randn(batch_size, dim_in, dtype=torch.float16).cuda()
                g = torch.randn(batch_size, dim_out, dtype=torch.float16).cuda()
                w = torch.randn(dim_out, dim_in, dtype=torch.float16).cuda()
                
                x_int8 = x.clone().to(torch.int8)
                g_int8 = g.clone().to(torch.int8)
                w_int8 = w.clone().to(torch.int8)
                wt_int8 = w.t().contiguous().clone().to(torch.int8)
                state_x_rowwise = x.max(dim=1)[0]
                state_g_rowwise = g.max(dim=1)[0]
                state_w_columnwise = w.max(dim=0)[0]
                state_w_rowwise = w.max(dim=1)[0]
                state_w_global = w.max()

                info = {'repeat' : repeat, 'batch_size' : batch_size, 'dim_out' : dim_out, 'dim_in' : dim_in, 'wm' : wm, 'switch' : switch}

                get_time('standard_fwd', lambda : x.matmul(w.t()), info)
                get_time('standard_gw', lambda : g.t().matmul(x), info)
                get_time('standard_gx', lambda : g.matmul(w), info)
                get_time('rowwise_fwd', lambda : int8_matmul_rowwise_dequantize(x_int8, w_int8.t(), state_x_rowwise, state_w_columnwise, None), info)
                get_time('rowwise_bwd', lambda : int8_matmul_rowwise_dequantize(g_int8, wt_int8.t(), state_x_rowwise, state_w_rowwise, None), info)
                get_time('global_fwd', lambda : int8_matmul_mixed_dequanitze(x_int8, w_int8.t(), state_x_rowwise, state_w_global, None), info)
                get_time('global_bwd', lambda : int8_matmul_mixed_dequanitze(g_int8, wt_int8.t(), state_x_rowwise, state_w_global, None), info)
                get_time('x_quantize_rowwise', lambda : quantize_rowwise(x), info)
                get_time('g_quantize_rowwise', lambda : quantize_rowwise(g), info)
                get_time('w_quantize_rowwise', lambda : quantize_rowwise(w), info)
                get_time('w_quantize_colwise_transpose', lambda : quantize_columnwise_and_transpose(w), info)
                get_time('w_quantize_global', lambda : quantize_global(w), info)
                get_time('w_quantize_global_transpose', lambda : quantize_global_transpose(w), info)

                time_standard = info['standard_fwd'] + info['standard_gx'] + info['standard_gw']
                time_rowwise = info['x_quantize_rowwise'] + info['g_quantize_rowwise']  + info['w_quantize_colwise_transpose'] + info['w_quantize_rowwise'] + info['standard_gw'] + info['rowwise_fwd'] + info['rowwise_bwd']
                time_global = info['x_quantize_rowwise'] + info['g_quantize_rowwise'] + info['w_quantize_global'] + info['w_quantize_global_transpose'] + info['standard_gw'] + info['global_fwd'] + info['global_bwd']

                print('TOTAL STANDARD', time_standard)
                print('TOTAL ROWWISE', time_rowwise)
                print('TOTAL GLOBAL', time_global)

                print('speedup', -100*(time_global - time_standard)/time_standard)

                info['time_standard'] = time_standard
                info['time_rowwise'] = time_rowwise
                info['time_global'] = time_global

                info_json = json.dumps(info)

Mitchell Wortsman's avatar
Mitchell Wortsman committed
100
101
                # TODO: change this to what you want.
                with open("speed_benchmark/info.jsonl", "a") as file:
Mitchell Wortsman's avatar
Mitchell Wortsman committed
102
                    file.write(info_json + "\n")