README.md 9.07 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
# bitsandbytes

3
The bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers, matrix multiplication (LLM.int8()), and quantization functions.
4

5
6
7
8
9
10


Resources:
- [8-bit Optimizer Paper](https://arxiv.org/abs/2110.02861) --  [Video](https://www.youtube.com/watch?v=IxrlHAJtqKE) -- [Docs](https://bitsandbytes.readthedocs.io/en/latest/)

- [LLM.int8() Paper](https://arxiv.org/abs/2208.07339) -- [LLM.int8() Software Blog Post](https://huggingface.co/blog/hf-bitsandbytes-integration) -- [LLM.int8() Emergent Features Blog Post](https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/)
11
12

## TL;DR
13
**Requirements**
14
15
16
Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0.

(Deprecated: CUDA 10.0 is deprecated and only CUDA >= 11.0) will be supported with release 0.39.0)
Stas Bekman's avatar
Stas Bekman committed
17

18
**Installation**:
19

20
``pip install bitsandbytes``
21

22
In some cases it can happen that you need to compile from source. If this happens please consider submitting a bug report with `python -m bitsandbytes` information. What now follows is some short instructions which might work out of the box if `nvcc` is installed. If these do not work see further below.
23

24
Compilation quickstart:
25
```bash
26
27
28
29
30
31
32
33
git clone https://github.com/timdettmers/bitsandbytes.git
cd bitsandbytes

# CUDA_VERSIONS in {110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 120}
# make argument in {cuda110, cuda11x, cuda12x}
# if you do not know what CUDA you have, try looking at the output of: python -m bitsandbytes
CUDA_VERSION=117 make cuda11x
python setup.py install
34
35
```

36
**Using Int8 inference with HuggingFace Transformers**
37

38
39
40
41
42
43
44
45
46
47
```python
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
  'decapoda-research/llama-7b-hf,
  device_map='auto',
  load_in_8bit=True,
  max_memory=f'{int(torch.cuda.mem_get_info()[0]/1024**3)-2}GB')
```

A more detailed example, can be found in [examples/int8_inference_huggingface.py](examples/int8_inference_huggingface.py).
48

49
**Using 8-bit optimizer**:
50
51
52
53
1. Comment out optimizer: ``#torch.optim.Adam(....)``
2. Add 8-bit optimizer of your choice ``bnb.optim.Adam8bit(....)`` (arguments stay the same)
3. Replace embedding layer if necessary: ``torch.nn.Embedding(..) -> bnb.nn.Embedding(..)``

Tim Dettmers's avatar
Tim Dettmers committed
54

55
56
57
58
**Using 8-bit Inference**:
1. Comment out torch.nn.Linear: ``#linear = torch.nn.Linear(...)``
2. Add bnb 8-bit linear light module: ``linear = bnb.nn.Linear8bitLt(...)`` (base arguments stay the same)
3. There are two modes:
David Silin's avatar
David Silin committed
59
60
   - Mixed 8-bit training with 16-bit main weights. Pass the argument ``has_fp16_weights=True`` (default)
   - Int8 inference. Pass the argument ``has_fp16_weights=False``
61
62
63
4. To use the full LLM.int8() method, use the ``threshold=k`` argument. We recommend ``k=6.0``.
```python
# LLM.int8()
David Silin's avatar
David Silin committed
64
linear = bnb.nn.Linear8bitLt(dim1, dim2, bias=True, has_fp16_weights=False, threshold=6.0)
65
66
67
68
69
# inputs need to be fp16
out = linear(x.to(torch.float16))
```


Tim Dettmers's avatar
Tim Dettmers committed
70
## Features
71
72
- 8-bit Matrix multiplication with mixed precision decomposition
- LLM.int8() inference
73
- 8-bit Optimizers: Adam, AdamW, RMSProp, LARS, LAMB, Lion (saves 75% memory)
Tim Dettmers's avatar
Tim Dettmers committed
74
75
- Stable Embedding Layer: Improved stability through better initialization, and normalization
- 8-bit quantization: Quantile, Linear, and Dynamic quantization
76
- Fast quantile estimation: Up to 100x faster than other algorithms
Tim Dettmers's avatar
Tim Dettmers committed
77
78
79
80
81

## Requirements & Installation

Requirements: anaconda, cudatoolkit, pytorch

82
Hardware requirements:
Pranav's avatar
Pranav committed
83
 - LLM.int8(): NVIDIA Turing (RTX 20xx; T4) or Ampere GPU (RTX 30xx; A4-A100); (a GPU from 2018 or newer).
84
 - 8-bit optimizers and quantization: NVIDIA Kepler GPU or newer (>=GTX 78X).
Tim Dettmers's avatar
Tim Dettmers committed
85

86
Supported CUDA versions: 10.2 - 12.0
Tim Dettmers's avatar
Tim Dettmers committed
87

88
89
The bitsandbytes library is currently only supported on Linux distributions. Windows is not supported at the moment.

90
The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the ["Get Started"](https://pytorch.org/get-started/locally/) instructions on the official website.
Tim Dettmers's avatar
Tim Dettmers committed
91

Stas Bekman's avatar
Stas Bekman committed
92
93
94
95
To install run:

``pip install bitsandbytes``

96
## Using bitsandbytes
Tim Dettmers's avatar
Tim Dettmers committed
97

98
99
100
101
102
### Using Int8 Matrix Multiplication

For straight Int8 matrix multiplication with mixed precision decomposition you can use ``bnb.matmul(...)``. To enable mixed precision decomposition, use the threshold parameter:
```python
bnb.matmul(..., threshold=6.0)
Tim Dettmers's avatar
Tim Dettmers committed
103
104
```

105
For instructions how to use LLM.int8() inference layers in your own code, see the TL;DR above or for extended instruction see [this blog post](https://github.com/huggingface/transformers).
Tim Dettmers's avatar
Tim Dettmers committed
106
107
108
109
110
111
112
113
114
115
116

### Using the 8-bit Optimizers

With bitsandbytes 8-bit optimizers can be used by changing a single line of code in your codebase. For NLP models we recommend also to use the StableEmbedding layers (see below) which improves results and helps with stable 8-bit optimization.  To get started with 8-bit optimizers, it is sufficient to replace your old optimizer with the 8-bit optimizer in the following way:
```python
import bitsandbytes as bnb

# adam = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.995)) # comment out old optimizer
adam = bnb.optim.Adam8bit(model.parameters(), lr=0.001, betas=(0.9, 0.995)) # add bnb optimizer
adam = bnb.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.995), optim_bits=8) # equivalent

117
118

torch.nn.Embedding(...) ->  bnb.nn.StableEmbedding(...) # recommended for NLP models
Tim Dettmers's avatar
Tim Dettmers committed
119
120
```

121
122
123
124
Note that by default all parameter tensors with less than 4096 elements are kept at 32-bit even if you initialize those parameters with 8-bit optimizers. This is done since such small tensors do not save much memory and often contain highly variable parameters (biases) or parameters that require high precision (batch norm, layer norm). You can change this behavior like so:
```
# parameter tensors with less than 16384 values are optimized in 32-bit
# it is recommended to use multiplies of 4096
125
adam = bnb.optim.Adam8bit(model.parameters(), min_8bit_size=16384)
126
```
Tim Dettmers's avatar
Tim Dettmers committed
127
128
129

### Change Bits and other Hyperparameters for Individual Parameters

130
If you want to optimize some unstable parameters with 32-bit Adam and others with 8-bit Adam, you can use the `GlobalOptimManager`. With this, we can also configure specific hyperparameters for particular layers, such as embedding layers. To do that, we need two things: (1) register the parameter while they are still on the CPU, (2) override the config with the new desired hyperparameters (anytime, anywhere). See our [guide](howto_config_override.md) for more details
Tim Dettmers's avatar
Tim Dettmers committed
131
132
133
134
135
136
137

### Fairseq Users

To use the Stable Embedding Layer, override the respective `build_embedding(...)` function of your model. Make sure to also use the `--no-scale-embedding` flag to disable scaling of the word embedding layer (nor replaced with layer norm). You can use the optimizers by replacing the optimizer in the respective file (`adam.py` etc.).

## Release and Feature History

138
139
140
For upcoming features and changes and full history see [Patch Notes](CHANGELOG.md).

## Errors
Tim Dettmers's avatar
Tim Dettmers committed
141

142
1. RuntimeError: CUDA error: no kernel image is available for execution on the device. [Solution](errors_and_solutions.md#No-kernel-image-available)
143
2. __fatbinwrap_.. [Solution](errors_and_solutions.md#fatbinwrap_)
Tim Dettmers's avatar
Tim Dettmers committed
144

145
## Compile from source
146
147
148
149
150
To compile from source, you need an installation of CUDA. If `nvcc` is not installed, you can install the CUDA Toolkit with nvcc through the following commands.

```bash
wget https://raw.githubusercontent.com/TimDettmers/bitsandbytes/main/cuda_install.sh
# Syntax cuda_install CUDA_VERSION INSTALL_PREFIX EXPORT_TO_BASH
Tim Dettmers's avatar
Tim Dettmers committed
151
#   CUDA_VERSION in {110, 111, 112, 113, 114, 115, 116, 117, 118, 120, 121}
152
153
154
155
156
157
158
159
160
#   EXPORT_TO_BASH in {0, 1} with 0=False and 1=True 

# For example, the following installs CUDA 11.8 to ~/local/cuda-11.8 and exports the path to your .bashrc
bash cuda install 118 ~/local 1 
```

To use a specific CUDA version just for a single compile run, you can set the variable `CUDA_HOME`, for example the following command compiles `libbitsandbytes_cuda117.so` using compiler flags for cuda11x with the cuda version at `~/local/cuda-11.7`:

``CUDA_HOME=~/local/cuda-11.7 CUDA_VERSION=117 make cuda11x``
161

162
For more detailed instruction, please follow the [compile_from_source.md](compile_from_source.md) instructions.
163

Tim Dettmers's avatar
Tim Dettmers committed
164
165
166
167
168
## License

The majority of bitsandbytes is licensed under MIT, however portions of the project are available under separate license terms: Pytorch is licensed under the BSD license.

We thank Fabio Cannizzo for his work on [FastBinarySearch](https://github.com/fabiocannizzo/FastBinarySearch) which we use for CPU quantization.
169

170
171
## How to cite us
If you found this library and found LLM.int8() useful, please consider citing our work:
172
173

```bibtex
174
175
176
177
178
179
180
181
@article{dettmers2022llmint8,
  title={LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale},
  author={Dettmers, Tim and Lewis, Mike and Belkada, Younes and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:2208.07339},
  year={2022}
}
```

182
183
184
For 8-bit optimizers or quantization routines, please consider citing the following work:

```bibtex
185
186
187
188
189
@article{dettmers2022optimizers,
  title={8-bit Optimizers via Block-wise Quantization},
  author={Dettmers, Tim and Lewis, Mike and Shleifer, Sam and Zettlemoyer, Luke},
  journal={9th International Conference on Learning Representations, ICLR},
  year={2022}
190
191
}
```