README.md 6.98 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
# bitsandbytes

3
The bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers, matrix multiplication (LLM.int8()), and quantization functions.
4

5
6
7
8
9
10


Resources:
- [8-bit Optimizer Paper](https://arxiv.org/abs/2110.02861) --  [Video](https://www.youtube.com/watch?v=IxrlHAJtqKE) -- [Docs](https://bitsandbytes.readthedocs.io/en/latest/)

- [LLM.int8() Paper](https://arxiv.org/abs/2208.07339) -- [LLM.int8() Software Blog Post](https://huggingface.co/blog/hf-bitsandbytes-integration) -- [LLM.int8() Emergent Features Blog Post](https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/)
11
12

## TL;DR
13
**Requirements**
14
Python >=3.8. Linux distribution (Ubuntu, MacOS, etc.) + CUDA > 10.0. LLM.int8() requires Turing or Ampere GPUs.
15
**Installation**:
16
``pip install bitsandbytes``
17

18
**Using 8-bit optimizer**:
19
20
21
22
1. Comment out optimizer: ``#torch.optim.Adam(....)``
2. Add 8-bit optimizer of your choice ``bnb.optim.Adam8bit(....)`` (arguments stay the same)
3. Replace embedding layer if necessary: ``torch.nn.Embedding(..) -> bnb.nn.Embedding(..)``

Tim Dettmers's avatar
Tim Dettmers committed
23

24
25
26
27
**Using 8-bit Inference**:
1. Comment out torch.nn.Linear: ``#linear = torch.nn.Linear(...)``
2. Add bnb 8-bit linear light module: ``linear = bnb.nn.Linear8bitLt(...)`` (base arguments stay the same)
3. There are two modes:
David Silin's avatar
David Silin committed
28
29
   - Mixed 8-bit training with 16-bit main weights. Pass the argument ``has_fp16_weights=True`` (default)
   - Int8 inference. Pass the argument ``has_fp16_weights=False``
30
31
32
4. To use the full LLM.int8() method, use the ``threshold=k`` argument. We recommend ``k=6.0``.
```python
# LLM.int8()
David Silin's avatar
David Silin committed
33
linear = bnb.nn.Linear8bitLt(dim1, dim2, bias=True, has_fp16_weights=False, threshold=6.0)
34
35
36
37
38
# inputs need to be fp16
out = linear(x.to(torch.float16))
```


Tim Dettmers's avatar
Tim Dettmers committed
39
## Features
40
41
- 8-bit Matrix multiplication with mixed precision decomposition
- LLM.int8() inference
42
- 8-bit Optimizers: Adam, AdamW, RMSProp, LARS, LAMB (saves 75% memory)
Tim Dettmers's avatar
Tim Dettmers committed
43
44
- Stable Embedding Layer: Improved stability through better initialization, and normalization
- 8-bit quantization: Quantile, Linear, and Dynamic quantization
45
- Fast quantile estimation: Up to 100x faster than other algorithms
Tim Dettmers's avatar
Tim Dettmers committed
46
47
48
49
50

## Requirements & Installation

Requirements: anaconda, cudatoolkit, pytorch

51
Hardware requirements:
52
53
 - LLM.int8(): NVIDIA Turing (RTX 20xx; T4) or Ampere GPU (RTX 30xx; A4-A100); (a GPU from 2018 or older).
 - 8-bit optimizers and quantization: NVIDIA Maxwell GPU or newer (>=GTX 9XX).
Tim Dettmers's avatar
Tim Dettmers committed
54

55
Supported CUDA versions: 10.2 - 11.7
Tim Dettmers's avatar
Tim Dettmers committed
56

57
58
The bitsandbytes library is currently only supported on Linux distributions. Windows is not supported at the moment.

59
The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the ["Get Started"](https://pytorch.org/get-started/locally/) instructions on the official website.
Tim Dettmers's avatar
Tim Dettmers committed
60

61
## Using bitsandbytes
Tim Dettmers's avatar
Tim Dettmers committed
62

63
64
65
66
67
### Using Int8 Matrix Multiplication

For straight Int8 matrix multiplication with mixed precision decomposition you can use ``bnb.matmul(...)``. To enable mixed precision decomposition, use the threshold parameter:
```python
bnb.matmul(..., threshold=6.0)
Tim Dettmers's avatar
Tim Dettmers committed
68
69
```

70
For instructions how to use LLM.int8() inference layers in your own code, see the TL;DR above or for extended instruction see [this blog post](https://github.com/huggingface/transformers).
Tim Dettmers's avatar
Tim Dettmers committed
71
72
73
74
75
76
77
78
79
80
81

### Using the 8-bit Optimizers

With bitsandbytes 8-bit optimizers can be used by changing a single line of code in your codebase. For NLP models we recommend also to use the StableEmbedding layers (see below) which improves results and helps with stable 8-bit optimization.  To get started with 8-bit optimizers, it is sufficient to replace your old optimizer with the 8-bit optimizer in the following way:
```python
import bitsandbytes as bnb

# adam = torch.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.995)) # comment out old optimizer
adam = bnb.optim.Adam8bit(model.parameters(), lr=0.001, betas=(0.9, 0.995)) # add bnb optimizer
adam = bnb.optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.995), optim_bits=8) # equivalent

82
83

torch.nn.Embedding(...) ->  bnb.nn.StableEmbedding(...) # recommended for NLP models
Tim Dettmers's avatar
Tim Dettmers committed
84
85
```

86
87
88
89
Note that by default all parameter tensors with less than 4096 elements are kept at 32-bit even if you initialize those parameters with 8-bit optimizers. This is done since such small tensors do not save much memory and often contain highly variable parameters (biases) or parameters that require high precision (batch norm, layer norm). You can change this behavior like so:
```
# parameter tensors with less than 16384 values are optimized in 32-bit
# it is recommended to use multiplies of 4096
90
adam = bnb.optim.Adam8bit(model.parameters(), min_8bit_size=16384)
91
```
Tim Dettmers's avatar
Tim Dettmers committed
92
93
94

### Change Bits and other Hyperparameters for Individual Parameters

95
If you want to optimize some unstable parameters with 32-bit Adam and others with 8-bit Adam, you can use the `GlobalOptimManager`. With this, we can also configure specific hyperparameters for particular layers, such as embedding layers. To do that, we need two things: (1) register the parameter while they are still on the CPU, (2) override the config with the new desired hyperparameters (anytime, anywhere). See our [guide](howto_config_override.md) for more details
Tim Dettmers's avatar
Tim Dettmers committed
96
97
98
99
100
101
102

### Fairseq Users

To use the Stable Embedding Layer, override the respective `build_embedding(...)` function of your model. Make sure to also use the `--no-scale-embedding` flag to disable scaling of the word embedding layer (nor replaced with layer norm). You can use the optimizers by replacing the optimizer in the respective file (`adam.py` etc.).

## Release and Feature History

103
104
105
For upcoming features and changes and full history see [Patch Notes](CHANGELOG.md).

## Errors
Tim Dettmers's avatar
Tim Dettmers committed
106

107
1. RuntimeError: CUDA error: no kernel image is available for execution on the device. [Solution](errors_and_solutions.md#No-kernel-image-available)
108
2. __fatbinwrap_.. [Solution](errors_and_solutions.md#fatbinwrap_)
Tim Dettmers's avatar
Tim Dettmers committed
109

110
111
112
113
## Compile from source

To compile from source, please follow the [compile_from_source.md](compile_from_source.md) instructions.

Tim Dettmers's avatar
Tim Dettmers committed
114
115
116
117
118
## License

The majority of bitsandbytes is licensed under MIT, however portions of the project are available under separate license terms: Pytorch is licensed under the BSD license.

We thank Fabio Cannizzo for his work on [FastBinarySearch](https://github.com/fabiocannizzo/FastBinarySearch) which we use for CPU quantization.
119

120
121
## How to cite us
If you found this library and found LLM.int8() useful, please consider citing our work:
122
123

```bibtex
124
125
126
127
128
129
130
131
@article{dettmers2022llmint8,
  title={LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale},
  author={Dettmers, Tim and Lewis, Mike and Belkada, Younes and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:2208.07339},
  year={2022}
}
```

132
133
134
For 8-bit optimizers or quantization routines, please consider citing the following work:

```bibtex
135
136
137
138
139
@article{dettmers2022optimizers,
  title={8-bit Optimizers via Block-wise Quantization},
  author={Dettmers, Tim and Lewis, Mike and Shleifer, Sam and Zettlemoyer, Luke},
  journal={9th International Conference on Learning Representations, ICLR},
  year={2022}
140
141
}
```