"src/diffusers/models/unet_blocks.py" did not exist on "6d5ef87e6b814cd0f5e3deaa80e20d90b8e4d838"
README.md 6.81 KB
Newer Older
1
2
3
<p align="center"><img src="https://avatars.githubusercontent.com/u/175231607?s=200&v=4" alt=""></p>
<h1 align="center">bitsandbytes</h1>
<p align="center">
Matthew Douglas's avatar
Matthew Douglas committed
4
5
6
7
8
    <a href="https://github.com/bitsandbytes-foundation/bitsandbytes/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/bitsandbytes-foundation/bitsandbytes.svg?color=blue"></a>
    <a href="https://pepy.tech/project/bitsandbytes"><img alt="Downloads" src="https://static.pepy.tech/badge/bitsandbytes/month"></a>
    <a href="https://github.com/bitsandbytes-foundation/bitsandbytes/actions/workflows/tests.yml"><img alt="Nightly Unit Tests" src="https://img.shields.io/github/actions/workflow/status/bitsandbytes-foundation/bitsandbytes/tests.yml?logo=github&label=Nightly%20Tests"></a>
    <a href="https://github.com/bitsandbytes-foundation/bitsandbytes/releases"><img alt="GitHub Release" src="https://img.shields.io/github/v/release/bitsandbytes-foundation/bitsandbytes"></a>
    <a href="https://pypi.org/project/bitsandbytes/"><img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/bitsandbytes"></a>
9
</p>
Tim Dettmers's avatar
Tim Dettmers committed
10

11
`bitsandbytes` enables accessible large language models via k-bit quantization for PyTorch. We provide three main features for dramatically reducing memory consumption for inference and training:
Titus's avatar
Titus committed
12

13
14
15
* 8-bit optimizers uses block-wise quantization to maintain 32-bit performance at a small fraction of the memory cost.
* LLM.int8() or 8-bit quantization enables large language model inference with only half the required memory and without any performance degradation. This method is based on vector-wise quantization to quantize most features to 8-bits and separately treating outliers with 16-bit matrix multiplication.
* QLoRA or 4-bit quantization enables large language model training with several memory-saving techniques that don't compromise performance. This method quantizes a model to 4-bits and inserts a small set of trainable low-rank adaptation (LoRA) weights to allow training.
16

Titus's avatar
Titus committed
17
The library includes quantization primitives for 8-bit & 4-bit operations, through `bitsandbytes.nn.Linear8bitLt` and `bitsandbytes.nn.Linear4bit` and 8-bit optimizers through `bitsandbytes.optim` module.
18

19
20
## System Requirements
bitsandbytes has the following minimum requirements for all platforms:
21

22
23
24
* Python 3.9+
* [PyTorch](https://pytorch.org/get-started/locally/) 2.2+
  * _Note: While we aim to provide wide backwards compatibility, we recommend using the latest version of PyTorch for the best experience._
25

26
#### Accelerator support:
27

28
29
30
31
32
33
34
35
36
37
38
<table>
  <thead>
    <tr>
      <th>Platform</th>
      <th>Accelerator</th>
      <th>Hardware Requirements</th>
      <th>Support Status</th>
    </tr>
  </thead>
  <tbody>
    <tr>
Matthew Douglas's avatar
Matthew Douglas committed
39
      <td colspan="4">🐧 <strong>Linux, glibc >= 2.24</strong></td>
40
41
42
43
    </tr>
    <tr>
      <td align="right">x86-64</td>
      <td>◻️ CPU</td>
Matthew Douglas's avatar
Matthew Douglas committed
44
      <td>AVX2</td>
45
46
47
48
      <td>〰️ Partial Support</td>
    </tr>
    <tr>
      <td></td>
Matthew Douglas's avatar
Matthew Douglas committed
49
      <td>🟩 NVIDIA GPU <br><code>cuda</code></td>
50
      <td>SM50+ minimum<br>SM75+ recommended</td>
Matthew Douglas's avatar
Matthew Douglas committed
51
      <td>✅ Full Support</td>
52
53
54
    </tr>
    <tr>
      <td></td>
Matthew Douglas's avatar
Matthew Douglas committed
55
56
57
58
59
      <td>🟥 AMD GPU <br><code>cuda</code></td>
      <td>
        CDNA: gfx90a, gfx942<br>
        RDNA: gfx1100, gfx1200
      </td>
60
61
62
63
      <td>🚧 In Development</td>
    </tr>
    <tr>
      <td></td>
Matthew Douglas's avatar
Matthew Douglas committed
64
      <td>🟦 Intel GPU <br><code>xpu</code></td>
65
      <td>
Matthew Douglas's avatar
Matthew Douglas committed
66
67
        Data Center GPU Max Series<br>
        Arc A-Series (Alchemist)<br>
68
69
70
71
72
73
        Arc B-Series (Battlemage)
      </td>
      <td>🚧 In Development</td>
    </tr>
    <tr>
      <td></td>
Matthew Douglas's avatar
Matthew Douglas committed
74
      <td>🟪 Intel Gaudi <br><code>hpu</code></td>
75
      <td>Gaudi1, Gaudi2, Gaudi3</td>
Matthew Douglas's avatar
Matthew Douglas committed
76
      <td>🚧 In Development</td>
77
78
79
80
81
82
83
84
85
    </tr>
    <tr>
      <td align="right">aarch64</td>
      <td>◻️ CPU</td>
      <td></td>
      <td>〰️ Partial Support</td>
    </tr>
    <tr>
      <td></td>
Matthew Douglas's avatar
Matthew Douglas committed
86
      <td>🟩 NVIDIA GPU <br><code>cuda</code></td>
87
      <td>SM75, SM80, SM90, SM100</td>
Matthew Douglas's avatar
Matthew Douglas committed
88
      <td>✅ Full Support</td>
89
90
    </tr>
    <tr>
Matthew Douglas's avatar
Matthew Douglas committed
91
      <td colspan="4">🪟 <strong>Windows 11 / Windows Server 2019+</strong></td>
92
93
94
95
96
97
98
99
100
    </tr>
    <tr>
      <td align="right">x86-64</td>
      <td>◻️ CPU</td>
      <td>AVX2</td>
      <td>〰️ Partial Support</td>
    </tr>
    <tr>
      <td></td>
Matthew Douglas's avatar
Matthew Douglas committed
101
      <td>🟩 NVIDIA GPU <br><code>cuda</code></td>
102
      <td>SM50+ minimum<br>SM75+ recommended</td>
Matthew Douglas's avatar
Matthew Douglas committed
103
      <td>✅ Full Support</td>
104
105
106
    </tr>
    <tr>
      <td></td>
Matthew Douglas's avatar
Matthew Douglas committed
107
      <td>🟦 Intel GPU <br><code>xpu</code></td>
108
109
110
111
112
113
114
      <td>
        Arc A-Series (Alchemist) <br>
        Arc B-Series (Battlemage)
      </td>
      <td>🚧 In Development</td>
    </tr>
    <tr>
Matthew Douglas's avatar
Matthew Douglas committed
115
      <td colspan="4">🍎 <strong>macOS 13.1+</strong></td>
116
117
118
    </tr>
    <tr>
      <td align="right">arm64</td>
Matthew Douglas's avatar
Matthew Douglas committed
119
      <td>◻️ CPU</td>
120
      <td>Apple M1+</td>
Matthew Douglas's avatar
Matthew Douglas committed
121
      <td>🛣️ Future Roadmap</td>
122
    </tr>
Matthew Douglas's avatar
Matthew Douglas committed
123
124
125
126
127
    <tr>
      <td></td>
      <td>⬜ Metal <br><code>mps</code></td>
      <td>Apple M1+</td>
      <td>🛣️ Future Roadmap</td>
128
129
130
131
132
133
134
135
136
137
138
  </tbody>
</table>

## :book: Documentation
* [Official Documentation](https://huggingface.co/docs/bitsandbytes/main)
* 🤗 [Transformers](https://huggingface.co/docs/transformers/quantization/bitsandbytes)
* 🤗 [Diffusers](https://huggingface.co/docs/diffusers/quantization/bitsandbytes)
* 🤗 [PEFT](https://huggingface.co/docs/peft/developer_guides/quantization#quantize-a-model)

## :heart: Sponsors
The continued maintenance and development of `bitsandbytes` is made possible thanks to the generous support of our sponsors. Their contributions help ensure that we can keep improving the project and delivering valuable updates to the community.
Tim Dettmers's avatar
Tim Dettmers committed
139

140
141
142
<a href="https://hf.co" target="_blank"><img width="100" src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" alt="Hugging Face"></a>

## License
Titus's avatar
Titus committed
143
`bitsandbytes` is MIT licensed.
Tim Dettmers's avatar
Tim Dettmers committed
144
145

We thank Fabio Cannizzo for his work on [FastBinarySearch](https://github.com/fabiocannizzo/FastBinarySearch) which we use for CPU quantization.
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

## How to cite us
If you found this library useful, please consider citing our work:

### QLoRA

```bibtex
@article{dettmers2023qlora,
  title={Qlora: Efficient finetuning of quantized llms},
  author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:2305.14314},
  year={2023}
}
```

### LLM.int8()

```bibtex
@article{dettmers2022llmint8,
  title={LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale},
  author={Dettmers, Tim and Lewis, Mike and Belkada, Younes and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:2208.07339},
  year={2022}
}
```

### 8-bit Optimizers

```bibtex
@article{dettmers2022optimizers,
  title={8-bit Optimizers via Block-wise Quantization},
  author={Dettmers, Tim and Lewis, Mike and Shleifer, Sam and Zettlemoyer, Luke},
  journal={9th International Conference on Learning Representations, ICLR},
  year={2022}
}
```