test_optim.py 15.7 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
4
5
import os
import time
import shutil
import uuid
import pytest
Tim Dettmers's avatar
Tim Dettmers committed
6
import ctypes
Tim Dettmers's avatar
Tim Dettmers committed
7
8
9
10
11
12
13
import torch
import bitsandbytes as bnb
import bitsandbytes.functional as F

from os.path import join
from itertools import product

Tim Dettmers's avatar
Tim Dettmers committed
14
15
16
#import apex

k = 20
Tim Dettmers's avatar
Tim Dettmers committed
17
18
19
20
21
22
23
24
25
26
27

def get_temp_dir():
    path = '/tmp/autoswap/{0}'.format(str(uuid.uuid4()))
    os.makedirs(path, exist_ok=True)
    return path

def rm_path(path):
    shutil.rmtree(path)

str2optimizers = {}
str2optimizers['adam_pytorch'] = (None, torch.optim.Adam, bnb.optim.Adam)
Tim Dettmers's avatar
Tim Dettmers committed
28
29
#str2optimizers['adam_apex'] = (None, apex.optimizers.FusedAdam, bnb.optim.Adam)
#str2optimizers['momentum_apex'] = (None, lambda pxx: apex.optimizers.FusedSGD(pxx, 0.01, 0.9), bnb.optim.Adam)
Tim Dettmers's avatar
Tim Dettmers committed
30
str2optimizers['momentum_pytorch'] = (None, lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), bnb.optim.Adam)
Tim Dettmers's avatar
Tim Dettmers committed
31
32
#str2optimizers['lamb_apex'] = (None, lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.00, use_nvlamb=True), bnb.optim.Adam)
#str2optimizers['lars_apex'] = (None, lambda pxx: apex.parallel.LARC.LARC(apex.optimizers.FusedSGD(pxx, 0.01, 0.9)), bnb.optim.Adam)
Tim Dettmers's avatar
Tim Dettmers committed
33
34

str2optimizers['adam'] = (torch.optim.Adam, bnb.optim.Adam)
Tim Dettmers's avatar
Tim Dettmers committed
35
#str2optimizers['fused_adam'] = (apex.optimizers.FusedAdam, bnb.optim.Adam)
Tim Dettmers's avatar
Tim Dettmers committed
36
37
str2optimizers['momentum'] = (lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['lars'] = (lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9), lambda pxx: bnb.optim.LARS(pxx, 0.01, 0.9))
Tim Dettmers's avatar
Tim Dettmers committed
38
#str2optimizers['lamb'] = (lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.0, max_grad_norm=10000.0, eps=1e-8, use_nvlamb=True), bnb.optim.LAMB)
Tim Dettmers's avatar
Tim Dettmers committed
39
40
41
42
str2optimizers['rmsprop'] = (lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['adam8bit'] = (torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=False))
str2optimizers['momentum8bit'] = (lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['rmsprop8bit'] = (lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=False))
Tim Dettmers's avatar
Tim Dettmers committed
43
#str2optimizers['lamb8bit'] = (lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.0, max_grad_norm=10000.0, eps=1e-8, use_nvlamb=True), bnb.optim.LAMB8bit)
Tim Dettmers's avatar
Tim Dettmers committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
str2optimizers['lars8bit'] = (lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9), lambda pxx: bnb.optim.LARS8bit(pxx, 0.01, 0.9))

str2optimizers['adam8bit_blockwise'] = (torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=True))
str2optimizers['momentum8bit_blockwise'] = (lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=True))
str2optimizers['rmsprop8bit_blockwise'] = (lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=True))

str2statenames = {}
str2statenames['adam'] = [('exp_avg', 'state1'), ('exp_avg_sq', 'state2')]
str2statenames['momentum'] = [('momentum_buffer', 'state1')]
str2statenames['lars'] = [('momentum_buffer', 'state1')]
str2statenames['lamb'] = [('exp_avg', 'state1'), ('exp_avg_sq', 'state2')]
str2statenames['rmsprop'] = [('square_avg', 'state1')]
str2statenames['adam8bit'] = [('exp_avg', 'state1', 'qmap1', 'max1'), ('exp_avg_sq', 'state2', 'qmap2', 'max2')]
str2statenames['lamb8bit'] = [('exp_avg', 'state1', 'qmap1', 'max1'), ('exp_avg_sq', 'state2', 'qmap2', 'max2')]
str2statenames['adam8bit_blockwise'] = [('exp_avg', 'state1', 'qmap1', 'absmax1'), ('exp_avg_sq', 'state2', 'qmap2', 'absmax2')]
str2statenames['momentum8bit'] = [('momentum_buffer', 'state1', 'qmap1', 'max1')]
str2statenames['momentum8bit_blockwise'] = [('momentum_buffer', 'state1', 'qmap1', 'absmax1')]
str2statenames['lars8bit'] = [('momentum_buffer', 'state1', 'qmap1', 'max1')]
str2statenames['rmsprop8bit'] = [('square_avg', 'state1', 'qmap1', 'max1')]
str2statenames['rmsprop8bit_blockwise'] = [('square_avg', 'state1', 'qmap1', 'absmax1')]

dim1 = [1024]
dim2 = [32, 1024, 4097, 1]
gtype = [torch.float32, torch.float16]
Tim Dettmers's avatar
Tim Dettmers committed
68
optimizer_names = ['adam', 'momentum', 'rmsprop', 'lars', 'lamb']
Tim Dettmers's avatar
Tim Dettmers committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
values = list(product(dim1,dim2, gtype, optimizer_names))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer32bit(dim1, dim2, gtype, optim_name):
    if dim1 == 1 and dim2 == 1: return
    p1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1
    p2 = p1.clone()
    p1 = p1.float()


    torch_optimizer = str2optimizers[optim_name][0]([p1])
    bnb_optimizer = str2optimizers[optim_name][1]([p2])

    if gtype == torch.float32:
Tim Dettmers's avatar
Tim Dettmers committed
83
        atol, rtol = 1e-6, 1e-5
Tim Dettmers's avatar
Tim Dettmers committed
84
85
86
87
    else:
        atol, rtol = 1e-4, 1e-3


Tim Dettmers's avatar
Tim Dettmers committed
88
    for i in range(k):
Tim Dettmers's avatar
Tim Dettmers committed
89
90
91
92
93
94
95
96
97
98
99
100
        g = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.01
        p1.grad = g.clone().float()
        p2.grad = g.clone()

        bnb_optimizer.step()
        torch_optimizer.step()

        for name1, name2 in str2statenames[optim_name]:
            torch.testing.assert_allclose(torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol)

        torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)

Tim Dettmers's avatar
Tim Dettmers committed
101
        if i % (k//5) == 0 and i > 0:
Tim Dettmers's avatar
Tim Dettmers committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
            path = get_temp_dir()
            torch.save(bnb_optimizer.state_dict(),join(path, 'opt.pt'))
            del bnb_optimizer
            bnb_optimizer = None
            bnb_optimizer = str2optimizers[optim_name][1]([p2])
            bnb_optimizer.load_state_dict(torch.load(join(path, 'opt.pt')))
            rm_path(path)
            torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
            for name1, name2 in str2statenames[optim_name]:
                torch.testing.assert_allclose(torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol)

        if gtype == torch.float16:
            # the adam buffers should also be close because they are 32-bit
            # but the paramters can diverge because they are 16-bit
            # the difference grow larger and larger with each update
            # --> copy the state to keep weights close
            p1.data = p1.data.half().float()
            p2.copy_(p1.data)
            torch.testing.assert_allclose(p1.half(), p2)
        if optim_name in ['lars', 'lamb']:
            assert bnb_optimizer.state[p2]['unorm_vec'] > 0.0

dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32, torch.float16]
values = list(product(dim1,dim2, gtype))
names = ['dim1_{0}_dim2_{1}_gtype_{2}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype", values, ids=names)
def test_global_config(dim1, dim2, gtype):
    if dim1 == 1 and dim2 == 1: return
    p1 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
    p2 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
    p3 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
    mask = torch.rand_like(p2) < 0.1
    beta1 = 0.9
    beta2 = 0.999
    lr = 0.001
    eps = 1e-8

    bnb.optim.GlobalOptimManager.get_instance().initialize()
    bnb.optim.GlobalOptimManager.get_instance().override_config(p3, 'optim_bits', 8)

    bnb.optim.GlobalOptimManager.get_instance().register_parameters([p1, p2, p3])
    p1 = p1.cuda()
    p2 = p2.cuda()
    p3 = p3.cuda()

    adam2 = bnb.optim.Adam([p1, p2, p3], lr, (beta1, beta2), eps)

    if gtype == torch.float32:
        atol, rtol = 1e-6, 1e-5
    else:
        atol, rtol = 1e-4, 1e-3

    for i in range(50):
        g1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
        g2 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
        g3 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
        p1.grad = g1
        p2.grad = g2
        p3.grad = g3

        adam2.step()

        assert adam2.state[p3]['state1'].dtype == torch.uint8
        assert adam2.state[p3]['state2'].dtype == torch.uint8



dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32, torch.float16]
Tim Dettmers's avatar
Tim Dettmers committed
174
optimizer_names = ['adam8bit', 'momentum8bit', 'rmsprop8bit', 'adam8bit_blockwise', 'lamb8bit', 'lars8bit', 'momentum8bit_blockwise', 'rmsprop8bit_blockwise']
Tim Dettmers's avatar
Tim Dettmers committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
values = list(product(dim1,dim2, gtype, optimizer_names))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer8bit(dim1, dim2, gtype, optim_name):
    if dim1 == 1 and dim2 == 1: return
    p1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1
    p2 = p1.clone()
    p1 = p1.float()
    blocksize = 2048

    torch_optimizer = str2optimizers[optim_name][0]([p1])
    bnb_optimizer = str2optimizers[optim_name][1]([p2])

    if gtype == torch.float32:
        atol, rtol = 3e-3, 1e-3
        patol, prtol = 1e-5, 1e-3

    else:
        atol, rtol = 3e-3, 1e-3
        patol, prtol = 1e-5, 1e-3

    errors = []
    relerrors = []

    for i in range(50):
        g = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.01
        p1.grad = g.clone().float()
        p2.grad = g.clone()

        bnb_optimizer.step()
        torch_optimizer.step()

        torch.testing.assert_allclose(p1, p2.float(), atol=patol, rtol=prtol)

        dequant_states = []
        for name1, name2, qmap, max_val in str2statenames[optim_name]:
            #print(bnb_optimizer.state[p2][max_val], name1)
            if 'blockwise' in optim_name:
                s1 = F.dequantize_blockwise(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize)
            else:
                s1 = F.dequantize(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2])
            num_not_close = torch.isclose(torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol)==0
            assert num_not_close.sum().item() < 20
            dequant_states.append(s1.clone())

        err  = torch.abs(p1-p2)
        relerr = err/torch.abs(p1)
        assert err.mean() < 0.0001
        assert relerr.mean() < 0.001

        errors.append(err.mean().item())
        relerrors.append(relerr.mean().item())

        if i % 10 == 0 and i > 0:
            for (name1, name2, qmap, max_val), s in zip(str2statenames[optim_name], dequant_states):
                s1cpy = s.clone()
                raws1cpy = bnb_optimizer.state[p2][name2].clone()
                qmap1 = bnb_optimizer.state[p2][qmap].clone()

                path = get_temp_dir()
                torch.save(bnb_optimizer.state_dict(),join(path, 'opt.pt'))
                del bnb_optimizer
                bnb_optimizer = None
                bnb_optimizer = str2optimizers[optim_name][1]([p2])
                bnb_optimizer.load_state_dict(torch.load(join(path, 'opt.pt')))
                rm_path(path)
                torch.testing.assert_allclose(raws1cpy, bnb_optimizer.state[p2][name2])
                torch.testing.assert_allclose(qmap1, bnb_optimizer.state[p2][qmap])

                if 'blockwise' in optim_name:
                    s1 = F.dequantize_blockwise(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize)
                else:
                    s1 = F.dequantize(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2])
                torch.testing.assert_allclose(s1cpy, s1)

                num_not_close = torch.isclose(torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol)==0
                assert num_not_close.sum().item() < 20
            torch.testing.assert_allclose(p1, p2.float(), atol=patol, rtol=prtol)

        # the parameters diverge quickly. Here we keep them close
        # together so we can test against the Adam error
        p1.data = p1.data.to(gtype).float()
        p2.copy_(p1.data)
        torch.testing.assert_allclose(p1.to(gtype), p2)
        for (name1, name2, qmap, max_val), s in zip(str2statenames[optim_name], dequant_states):
            torch_optimizer.state[p1][name1].copy_(s.data)

    #print(sum(errors)/len(errors))
    #print(sum(relerrors)/len(relerrors))



dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32]
optim_bits = [32, 8]
values = list(product(dim1,dim2, gtype, optim_bits))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_bits_{3}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_bits", values, ids=names)
def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits):
    if dim1 == 1 and dim2 == 1: return
    p1 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
    beta1 = 0.9
    beta2 = 0.999
    lr = 0.001
    eps = 1e-8
    p1 = p1.cuda()
    p2 = p1.clone()
    adam1 = bnb.optim.Adam([p1], lr, (beta1, beta2), eps, optim_bits=optim_bits)
    adam2 = bnb.optim.Adam([p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5)

    gnorm_vec = torch.zeros(100).cuda()
    step = 0

    for i in range(50):
        step += 1
        g1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + (0.01*i)
        g2 = g1.clone()
        p2.grad = g2

        current_gnorm, clip_val, gnorm_scale = F.percentile_clipping(g1, gnorm_vec, step, 5)
        g1 = (g1.float()*gnorm_scale).to(gtype)
        p1.grad = g1

        adam1.step()
        adam2.step()

        # gnorm_scale is not deterministic (warp reductions), as such there can be slight differences in state
        if optim_bits == 32:
            torch.testing.assert_allclose(p1, p2)
            torch.testing.assert_allclose(adam1.state[p1]['state1'], adam2.state[p2]['state1'], atol=5e-5, rtol=1e-4)
            torch.testing.assert_allclose(adam1.state[p1]['state2'], adam2.state[p2]['state2'], atol=5e-5, rtol=1e-4)
        elif optim_bits == 8:
            torch.testing.assert_allclose(p1, p2, atol=1e-4, rtol=1e-3)
            torch.testing.assert_allclose(adam1.state[p1]['state1'], adam2.state[p2]['state1'], atol=2, rtol=1e-3)
            torch.testing.assert_allclose(adam1.state[p1]['state2'], adam2.state[p2]['state2'], atol=2, rtol=1e-3)
            adam1.state[p1]['state1'].copy_(adam2.state[p2]['state1'])
            adam1.state[p1]['state2'].copy_(adam2.state[p2]['state2'])
        if i % 10 == 0 and i > 0:
            path = get_temp_dir()
            torch.save(adam2.state_dict(),join(path, 'opt.pt'))
            del adam2
            adam2 = None
            adam2 = bnb.optim.Adam([p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5)
            adam2.load_state_dict(torch.load(join(path, 'opt.pt')))




dim1 = [4096]
dim2 = [4096]
gtype = [torch.float32, torch.float16]
#optimizer_names = ['adam8bit_blockwise', 'adam8bit', 'lamb8bit']
#optimizer_names = ['adam8bit_blockwise', 'adam_apex', 'adam8bit', 'adam', 'adam_pytorch']
#optimizer_names = ['momentum_apex', 'momentum8bit', 'momentum_pytorch']
#optimizer_names = ['lamb_apex', 'lamb8bit']
#optimizer_names = ['lars_apex', 'lars8bit']
optimizer_names = ['adam8bit_blockwise']
values = list(product(dim1,dim2, gtype, optimizer_names))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}'.format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_benchmark_blockwise(dim1, dim2, gtype, optim_name):
    if dim1 == 1 and dim2 == 1: return
    p1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1

    bnb_optimizer = str2optimizers[optim_name][1]([p1])

    g = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.01
    p1.grad = g
Tim Dettmers's avatar
Tim Dettmers committed
344
345
    for i in range(k):
        if i == k//5:
Tim Dettmers's avatar
Tim Dettmers committed
346
347
348
349
350
351
352
353
354
            # 100 iterations for burn-in
            torch.cuda.synchronize()
            t0 = time.time()

        bnb_optimizer.step()

    torch.cuda.synchronize()
    s = time.time()-t0
    print('')
Tim Dettmers's avatar
Tim Dettmers committed
355
    params = (k-k//5)*dim1*dim2
Tim Dettmers's avatar
Tim Dettmers committed
356
357
358
359
    print(optim_name, gtype, s/params)
    #assert s < 3.9