test_deprecated.py 8.12 KB
Newer Older
1
2
3
4
5
import numpy as np
import pytest
from scipy.stats import norm
import torch

Matthew Douglas's avatar
Matthew Douglas committed
6
import bitsandbytes as bnb
7
from bitsandbytes import functional as F
Matthew Douglas's avatar
Matthew Douglas committed
8
9
from tests.helpers import BOOLEAN_TRIPLES, describe_dtype, get_test_dims, id_formatter
from tests.test_autograd import TRANSPOSE_VALS
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126


@pytest.mark.deprecated
def test_kbit_quantile_estimation():
    for i in range(100):
        data = torch.randn(1024, 1024, device="cuda")
        for bits in range(2, 9):
            p = np.linspace(1.3e-4, 1 - 1.3e-4, 2**bits)
            val1 = torch.Tensor(norm.ppf(p)).cuda()
            val2 = F.estimate_quantiles(data, offset=0, num_quantiles=2**bits)
            err = torch.abs(val1 - val2).mean()
            assert err < 0.038

    for i in range(100):
        data = torch.randn(1024, 1024, device="cuda")
        for bits in range(2, 4):
            total_values = 2**bits - 1
            p = np.linspace(0, 1, 2 * total_values + 1)
            idx = np.arange(1, 2 * total_values + 1, 2)
            p = p[idx]
            offset = 1 / (2 * total_values)
            p = np.linspace(offset, 1 - offset, total_values)
            val1 = torch.Tensor(norm.ppf(p)).cuda()
            val2 = F.estimate_quantiles(data, num_quantiles=2**bits - 1)
            err = torch.abs(val1 - val2).mean()
            assert err < 0.035


@pytest.mark.parametrize("dtype", [torch.float32, torch.float16], ids=["float", "half"])
@pytest.mark.deprecated
def test_estimate_quantiles(dtype):
    A = torch.rand(1024, 1024, device="cuda")
    A = A.to(dtype)
    code = F.estimate_quantiles(A)

    percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device)
    torch.testing.assert_close(percs, code, atol=1e-3, rtol=1e-2)

    A = torch.randn(1024, 1024, device="cuda")
    A = A.to(dtype)
    code = F.estimate_quantiles(A)

    quantiles = torch.quantile(A.float(), percs)
    diff = torch.abs(code - quantiles)
    assert (diff > 5e-02).sum().item() == 0


@pytest.mark.deprecated
def test_quantile_quantization():
    for i in range(100):
        A1 = torch.randn(1024, 1024, device="cuda")
        code = F.estimate_quantiles(A1)
        C = F.quantize_no_absmax(A1, code)
        A2 = F.dequantize_no_absmax(C, code)
        diff = torch.abs(A1 - A2).mean().item()
        assert diff < 0.0075

        A1 = torch.rand(1024, 1024, device="cuda")
        code = F.estimate_quantiles(A1)
        C = F.quantize_no_absmax(A1, code)
        A2 = F.dequantize_no_absmax(C, code)
        diff = torch.abs(A1 - A2).mean().item()
        torch.testing.assert_close(A1, A2, atol=5e-3, rtol=0)
        assert diff < 0.001


@pytest.mark.deprecated
def test_dynamic_quantization():
    diffs = []
    reldiffs = []
    for i in range(100):
        A1 = torch.randn(1024, 1024, device="cuda")
        C, S = F.quantize(A1)
        A2 = F.dequantize(C, S)
        diff = torch.abs(A1 - A2)
        reldiff = diff / torch.abs(A1 + 1e-8)
        diffs.append(diff.mean().item())
        reldiffs.append(reldiff.mean().item())
        assert diff.mean().item() < 0.0135
    print(sum(diffs) / len(diffs))
    print(sum(reldiffs) / len(reldiffs))

    for i in range(100):
        A1 = torch.rand(1024, 1024, device="cuda")
        C, S = F.quantize(A1)
        A2 = F.dequantize(C, S)
        diff = torch.abs(A1 - A2).mean().item()
        torch.testing.assert_close(A1, A2, atol=1e-2, rtol=0)
        assert diff < 0.004


@pytest.mark.parametrize("gtype", [torch.float32, torch.float16], ids=["float", "half"])
@pytest.mark.deprecated
def test_percentile_clipping(gtype):
    gnorm_vec1 = torch.zeros(100, device="cuda")
    gnorm_vec2 = torch.zeros(100, device="cuda")
    n = 4
    step = 0
    percentile = 5
    for i in range(20):
        step += 1
        g = torch.randn(n, n, dtype=gtype, device="cuda")
        gnorm1, clip2, gnorm_scale = F.percentile_clipping(g, gnorm_vec2, step, percentile=percentile)
        assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1

        gnorm2 = torch.norm(g.float())
        if step == 1:
            gnorm_vec1[:] = gnorm2
        else:
            gnorm_vec1[step % 100] = gnorm2

        vals, idx = torch.sort(gnorm_vec1)
        clip1 = vals[percentile]

        torch.testing.assert_close(gnorm_vec1, torch.sqrt(gnorm_vec2))
        torch.testing.assert_close(clip1, clip2)
        torch.testing.assert_close(gnorm1, gnorm2)
Matthew Douglas's avatar
Matthew Douglas committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210


@pytest.mark.parametrize("dim1", get_test_dims(16, 64, n=1), ids=id_formatter("dim1"))
@pytest.mark.parametrize("dim2", [*get_test_dims(32, 96, n=1), 0], ids=id_formatter("dim2"))
@pytest.mark.parametrize("dim3", get_test_dims(32, 96, n=1), ids=id_formatter("dim3"))
@pytest.mark.parametrize("dim4", get_test_dims(32, 96, n=1), ids=id_formatter("dim4"))
@pytest.mark.parametrize("req_grad", BOOLEAN_TRIPLES, ids=id_formatter("req_grad"))
@pytest.mark.parametrize("transpose", TRANSPOSE_VALS, ids=id_formatter("transpose"))
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32], ids=describe_dtype)
@pytest.mark.parametrize(
    "funcs",
    [(torch.matmul, bnb.research.matmul_fp8_mixed), (torch.matmul, bnb.research.matmul_fp8_global)],
    ids=["matmul_fp8_mixed", "matmul_fp8_global"],
)
@pytest.mark.deprecated
@pytest.mark.skip("Deprecated functionality, to be removed.")
def test_matmul_fp8(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
    dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
    dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
    req_grad = list(req_grad)
    req_grad[2] = False

    for i in range(3):
        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
            A = torch.randn(size=dimA, device="cuda", requires_grad=req_grad[0], dtype=dtype)
            B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1], dtype=dtype)
            target = torch.randn(size=(dim2, dim4), device="cuda", requires_grad=req_grad[1], dtype=dtype)

            torch.nn.init.xavier_uniform_(B)

            fw_code = bnb.functional.create_fp8_map(True, 4, 3, 8).to(A.device)
            bw_code = bnb.functional.create_fp8_map(True, 5, 2, 8).to(A.device)

            if not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
                out_bnb = funcs[1](A, B.t(), fw_code, bw_code)
            elif not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
                out_bnb = funcs[1](A, B, fw_code, bw_code)

            assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}"

            n = out_bnb.numel()
            err = torch.abs(out_bnb - out_torch).float().mean().item()
            if n > 0:
                assert err < 0.115
                # assert err < 0.20
            if any(req_grad):
                out_bnb.data.copy_(out_torch)
                torch.cuda.synchronize()
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None

                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None

                if req_grad[0]:
                    torch.testing.assert_close(gradA1, gradA2, atol=0.015, rtol=0.1)

                if req_grad[1]:
                    n = gradB1.numel()
                    if dim2 > 0:
                        assert torch.abs(gradB1).sum() > 0.0
                        assert torch.abs(gradB2).sum() > 0.0
                    else:
                        assert torch.abs(gradB1).sum() == 0.0
                        assert torch.abs(gradB2).sum() == 0.0
                    idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)

                    assert (idx == 0).sum().item() <= n * 0.1
                    idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
                    assert (idx == 0).sum().item() <= n * 0.02
                    grad_err = (gradB1 - gradB2).abs().mean()
                    assert grad_err.item() < 0.003
                    torch.testing.assert_close(gradB1, gradB2, atol=0.18, rtol=0.3)