ops_hip.cuh 7.86 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// !!! This is a file automatically generated by hipify!!!
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

#ifndef ops_H
#define ops_H

#include <assert.h>
#include <cstdint>
#include <iostream>
#include <stdio.h>
#include <unistd.h>

#include <functional>
#include <hip/hip_fp16.h>
#include <hip/hip_runtime_api.h>
#include <hipblaslt/hipblaslt.h>
#include <hipsparse/hipsparse.h>
#include <rocblas/rocblas.h>
#include <vector>

#define CUDA_CHECK_RETURN(value)                                                                                       \
    {                                                                                                                  \
        hipError_t _m_cudaStat = value;                                                                                \
        if (_m_cudaStat != hipSuccess) {                                                                               \
            fprintf(stderr, "Error %s at line %d in file %s\n", hipGetErrorString(_m_cudaStat), __LINE__, __FILE__);   \
            exit(1);                                                                                                   \
        }                                                                                                              \
    }

#define CHECK_HIPSPARSE(value)                                                                                         \
    {                                                                                                                  \
        hipsparseStatus_t _m_hipStat = value;                                                                          \
        if (_m_hipStat != HIPSPARSE_STATUS_SUCCESS) {                                                                  \
            fprintf(                                                                                                   \
                stderr, "Error %s at line %d in file %s\n", hipsparseGetErrorString(_m_hipStat), __LINE__, __FILE__    \
            );                                                                                                         \
            exit(1);                                                                                                   \
        }                                                                                                              \
    }

inline void checkHipStatus(hipError_t status) {
    if (status != hipSuccess) {
        printf("hip API failed with status %d: %s\n", status, hipGetErrorString(status));
        throw std::logic_error("hip API failed");
    }
}

inline int checkHipblasStatus(hipblasStatus_t status) {
    if (status != HIPBLAS_STATUS_SUCCESS) {
        printf("hipBLAS API failed with status %d\n", status);
        // throw std::logic_error("cuBLAS API failed");
        return 1;
    }
    return 0;
}

typedef enum Operations_t {
    ksmul = 0,
} Operations_t;

typedef enum Optimizer_t {
    ADAM = 0,
    MOMENTUM = 1,
    RMSPROP = 2,
    LARS = 3,
    ADAGRAD = 4,
    LION = 5,
    ADEMAMIX = 6,
} Optimizer_t;

typedef enum Transform_t {
    ROW = 0,
    COL = 1,
    COL32 = 2,
    COL_TURING = 3,
    COL_AMPERE = 4,
} Transform_t;

typedef enum DataType_t {
    General8bit = 0,
    FP4 = 1,
    NF4 = 2,
} DataType_t;

typedef enum Funcs_t {
    FILL = 0,
    ARANGE = 1,
    _MUL = 2,
} Funcs_t;

class Context {
  public:
    rocblas_handle m_handle;

    Context() {
        rocblas_handle handle;
        rocblas_create_handle(&handle);
        m_handle = handle;
    }
};

class ContextLt {
  public:
    hipblasLtHandle_t m_handle;

    ContextLt() {
        hipblasLtHandle_t handle;
        hipblasLtCreate(&handle);
        m_handle = handle;
    }
};

class ContextHipsparse {
  public:
    hipsparseHandle_t m_handle;

    ContextHipsparse() {
        hipsparseHandle_t handle;
        hipsparseCreate(&handle);
        m_handle = handle;
    }
};

void quantize(float* code, float* A, unsigned char* out, int n);
void dequantize(float* code, unsigned char* A, float* out, int n, hipStream_t stream);
template <typename T, int STOCHASTIC, int DATA_TYPE>
void quantizeBlockwise(
    float* code, T* A, float* absmax, unsigned char* out, float* rand, int rand_offset, int blocksize, const int n
);
template <typename T, int DATA_TYPE>
void dequantizeBlockwise(
    float* code, unsigned char* A, float* absmax, T* out, int block_size, const int n, hipStream_t stream
);

template <typename T, int OPTIMIZER>
void optimizer32bit(
    T* g, T* p, float* state1, float* state2, float* unorm, float max_unorm, float param_norm, float beta1, float beta2,
    float beta3, float alpha, float eps, float weight_decay, int step, float lr, const float gnorm_scale,
    bool skip_zeros, int n
);

template <typename T, int OPTIMIZER>
void optimizerStatic8bit(
    T* p, T* g, unsigned char* state1, unsigned char* state2, float* unorm, float max_unorm, float param_norm,
    float beta1, float beta2, float eps, int step, float lr, float* quantiles1, float* quantiles2, float* max1,
    float* max2, float* new_max1, float* new_max2, float weight_decay, const float gnorm_scale, int n
);

template <typename T, int OPTIMIZER>
void optimizerStatic8bitBlockwise(
    T* p, T* g, unsigned char* state1, unsigned char* state2, float beta1, float beta2, float beta3, float alpha,
    float eps, int step, float lr, float* quantiles1, float* quantiles2, float* absmax1, float* absmax2,
    float weight_decay, const float gnorm_scale, bool skip_zeros, int n
);

template <typename T> void percentileClipping(T* g, float* gnorm_vec, int step, const int n);

void gemmex(
    Context* context, bool transposeA, bool transposeB, int m, int n, int k, void* A, void* B, void* C, int lda,
    int ldb, int ldc
);
void strided_gemmex(
    Context* context, bool transposeA, bool transposeB, int m, int n, int k, void* A, void* B, void* C, int lda,
    int ldb, int ldc, long long int strideA, long long int strideB, long long int strideC, int batchCount
);

template <int DTYPE_OUT, int SCALE_ROWS>
int igemmlt(
    hipblasLtHandle_t ltHandle, int m, int n, int k, const int8_t* A, const int8_t* B, void* C, float* row_scale,
    int lda, int ldb, int ldc, hipStream_t stream
);

void cutlass_igemm(
    bool transposeA, bool transposeB, int m, int n, int k, void* A, void* B, void* C, int lda, int ldb, int ldc
);
void dequant_mm_int32_fp16(
    int* A, float* rowStats, float* colStats, half* out, half* bias, int numRows, int numCols, hipStream_t stream
);
void getRowStats(half* A, float* rowStats, float threshold, int rows, int cols, hipStream_t stream);
void int8VectorQuant(
    half* __restrict__ A, int8_t* out, float* rowStats, float threshold, int rows, int cols, hipStream_t stream
);

void spmm_coo(
    hipsparseHandle_t handle, int* A_rowidx, int* A_colidx, half* A_vals, int A_nnz, int A_rows, int A_cols, int B_cols,
    int ldb, half* B, int ldc, half* C, bool transposed_B
);

template <typename T, int BITS>
void spmm_coo_very_sparse_naive(
    int* max_count, int* max_idx, int* offset_rowidx, int* rowidx, int* colidx, half* values, T* B, half* out,
    float* dequant_stats, int nnz_rows, int nnz, int rowsA, int rowsB, int colsB
);

void matmul4bite(half* A, unsigned char* B, half* out, int lda, int ldb, int rowsA, int colsA, int colsB);

template <typename T> void gemm_host(int m, int n, int k, T* A, T* B, T* out, int lda, int ldb, int ldc, int bits);
template <typename T>
void gemm_4bit_inference(
    int m, int n, int k, T* A, unsigned char* B, float* absmax, T* out, int lda, int ldb, int ldc, int blocksize
);
template <typename T, int BITS>
void gemm_4bit_inference_naive(
    int m, int n, int k, T* A, unsigned char* B, float* absmax, float* datatype, T* out, int lda, int ldb, int ldc,
    int blocksize, hipStream_t stream
);

template <typename T, int FUNC> void func(T* A, T* B, T value, long n);

#endif