README.md 10.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Benchmarking

## Inference
End-to-end inference benchmarking can be performed using the 🤗 [`optimum-benchmark`](https://github.com/huggingface/optimum-benchmark) library.

See the example script in
[inference_benchmark.py](inference_benchmark.py).

### Results (as of v0.45.0)

Our overall benchmarking results compared with v0.44.1 provide the following insights:
#### LLM.int8()
* **Turing/Ampere/Ada**: The observed per-token throughput is improved by 60-85%, while latency is decreased by 40-45%.
* **H100**: With our benchmarking of Llama 3.1 70B, we observed the new LLM.int8() to consistently outperform NF4 at batch size >= 8.

#### NF4/FP4
* **Turing/Ampere/Ada**: With batch size of 1, per-token throughput is _improved by 10-25%_ and per-token latency is _decreased by 10-20%_.
* **H100**: Across all batch sizes, per-token throughput is _improved by up to 28%_ and per-token latency is _decreased by up to 22%_.

Summaries with the benchmarking results are provided below.

#### NVIDIA T4 16GB
<details>
<summary>Qwen 2.5 3B Instruct</summary>

|                      | Batch Size | Mean Latency (s) <sub>v0.45.0.dev</sub> | Throughput <sub>v0.45.0.dev</sub> | Mean Latency (s) <sub>v0.44.1</sub> | Latency Improvement | Throughput <sub>v0.44.1</sub> | Throughput Improvement |
|----------------------|------------|------------------------------|------------------------|--------------------------|---------------------|--------------------|------------------------|
| FP16                 | 1          | 0.0390                       | 25.66                  | 0.0390                   | 1.00                | 25.66              | 1.000x                 |
| NF4                  | 1          | 0.0608                       | 16.45                  | 0.0710                   | 1.14                | 14.08              | 1.168x                 |
| NF4+DQ               | 1          | 0.0736                       | 13.58                  | 0.0905                   | 1.19                | 11.05              | 1.229x                 |
| INT8                 | 1          | 0.0902                       | 11.08                  | 0.1609                   | 1.44                | 6.21               | 1.784x                 |
| INT8+Decomp          | 1          | 0.1672                       | 5.98                   | 0.2994                   | 1.44                | 3.34               | 1.790x                 |
| FP16                 | 8          | 0.0422                       | 189.56                 | 0.0422                   | 1.00                | 189.56             | 1.000x                 |
| NF4                  | 8          | 0.0960                       | 83.37                  | 0.1010                   | 1.05                | 79.17              | 1.053x                 |
| NF4+DQ               | 8          | 0.1042                       | 76.80                  | 0.1156                   | 1.10                | 69.18              | 1.110x                 |
| INT8                 | 8          | 0.0919                       | 87.01                  | 0.1640                   | 1.44                | 48.78              | 1.784x                 |
| INT8+Decomp          | 8          | 0.1812                       | 44.15                  | 0.3296                   | 1.45                | 24.28              | 1.818x                 |
| FP16                 | 32         | 0.0601                       | 532.30                 | 0.0601                   | 1.00                | 532.30             | 1.000x                 |
| NF4                  | 32         | 0.1150                       | 278.32                 | 0.1182                   | 1.03                | 270.71             | 1.028x                 |
| NF4+DQ               | 32         | 0.1215                       | 263.36                 | 0.1297                   | 1.06                | 246.76             | 1.067x                 |
| INT8                 | 32         | 0.0943                       | 339.21                 | 0.1640                   | 1.42                | 195.14             | 1.738x                 |
| INT8+Decomp          | 32         | 0.1912                       | 167.37                 | 0.3413                   | 1.44                | 93.75              | 1.785x                 |
</details>

#### NVIDIA RTX 4090 24GB
<details>
<summary>Llama 3.1 8B</summary>

|                      | Batch Size | Mean Latency (s) <sub>v0.45.0.dev</sub> | Throughput <sub>v0.45.0.dev</sub> | Mean Latency (s) <sub>v0.44.1</sub> | Latency Improvement | Throughput <sub>v0.44.1</sub> | Throughput Improvement |
|----------------------|------------|------------------------------|------------------------|--------------------------|---------------------|--------------------|------------------------|
| BF16        | 1  | 0.0211 | 47.46   | 0.0211 | 1.00 | 47.46   | 1.000x |
| NF4         | 1  | 0.0148 | 67.71   | 0.0164 | 1.10 | 61.08   | 1.109x |
| NF4+DQ      | 1  | 0.0175 | 57.08   | 0.0208 | 1.16 | 48.15   | 1.185x |
| INT8        | 1  | 0.0220 | 45.39   | 0.0395 | 1.44 | 25.32   | 1.793x |
| INT8+Decomp | 1  | 0.0449 | 22.26   | 0.0743 | 1.40 | 13.45   | 1.655x |
| BF16        | 8  | 0.0239 | 334.64  | 0.0239 | 1.00 | 334.64  | 1.000x |
| NF4         | 8  | 0.0425 | 188.08  | 0.0422 | 0.99 | 189.50  | 0.993x |
| NF4+DQ      | 8  | 0.0443 | 180.68  | 0.0437 | 0.99 | 183.02  | 0.987x |
| INT8        | 8  | 0.0221 | 361.61  | 0.0389 | 1.43 | 205.82  | 1.757x |
| INT8+Decomp | 8  | 0.0478 | 164.55  | 0.0777 | 1.38 | 103.01  | 1.597x |
| BF16        | 32 | 0.0304 | 1054.35 | 0.0304 | 1.00 | 1054.35 | 1.000x |
| NF4         | 32 | 0.0461 | 694.60  | 0.0466 | 1.01 | 686.90  | 1.011x |
| NF4+DQ      | 32 | 0.0471 | 678.73  | 0.0480 | 1.02 | 666.33  | 1.019x |
| INT8        | 32 | 0.0230 | 1390.54 | 0.0390 | 1.41 | 819.99  | 1.696x |
| INT8+Decomp | 32 | 0.0512 | 624.94  | 0.0835 | 1.39 | 383.18  | 1.631x |
</details>

<details>
<summary>Qwen 2.5 14B Instruct</summary>

|                      | Batch Size | Mean Latency (s) <sub>v0.45.0.dev</sub> | Throughput <sub>v0.45.0.dev</sub> | Mean Latency (s) <sub>v0.44.1</sub> | Latency Improvement | Throughput <sub>v0.44.1</sub> | Throughput Improvement |
|----------------------|------------|------------------------------|------------------------|--------------------------|---------------------|--------------------|------------------------|
| NF4         | 1 | 0.0214 | 46.74  | 0.0256 | 1.16 | 39.10  | 1.195x |
| NF4+DQ      | 1 | 0.0256 | 39.03  | 0.0318 | 1.19 | 31.46  | 1.241x |
| INT8        | 1 | 0.0326 | 30.68  | 0.0596 | 1.45 | 16.79  | 1.827x |
| INT8+Decomp | 1 | 0.0648 | 15.44  | 0.1105 | 1.41 | 9.05   | 1.706x |
| NF4         | 8 | 0.0696 | 114.95 | 0.0697 | 1.00 | 114.78 | 1.001x |
| NF4+DQ      | 8 | 0.0719 | 111.29 | 0.0723 | 1.01 | 110.70 | 1.005x |
| INT8        | 8 | 0.0325 | 246.22 | 0.0596 | 1.45 | 134.21 | 1.835x |
| INT8+Decomp | 8 | 0.0721 | 110.95 | 0.1201 | 1.40 | 66.62  | 1.665x |
</details>


#### NVIDIA H100 80GB SXM
<details>
<summary>Llama 3.1 8B</summary>

|                      | Batch Size | Mean Latency (s) <sub>v0.45.0.dev</sub> | Throughput <sub>v0.45.0.dev</sub> | Mean Latency (s) <sub>v0.44.1</sub> | Latency Improvement | Throughput <sub>v0.44.1</sub> | Throughput Improvement |
|----------------------|------------|------------------------------|------------------------|--------------------------|---------------------|--------------------|------------------------|
| BF16        | 1  | 0.0244 | 40.99   | 0.0244 | 1.00 | 40.99   | 1.000x |
| NF4         | 1  | 0.0331 | 30.14   | 0.0391 | 1.15 | 25.60   | 1.177x |
| NF4+DQ      | 1  | 0.0411 | 24.34   | 0.0528 | 1.22 | 18.92   | 1.286x |
| INT8        | 1  | 0.0522 | 19.17   | N/A    | N/A  | N/A     | N/A    |
| INT8+Decomp | 1  | 0.0817 | 12.24   | N/A    | N/A  | N/A     | N/A    |
| BF16        | 8  | 0.0255 | 313.90  | 0.0255 | 1.00 | 313.90  | 1.000x |
| NF4         | 8  | 0.0476 | 168.05  | 0.0551 | 1.14 | 145.13  | 1.158x |
| NF4+DQ      | 8  | 0.0566 | 141.27  | 0.0663 | 1.15 | 120.67  | 1.171x |
| INT8        | 8  | 0.0515 | 155.44  | N/A    | N/A  | N/A     | N/A    |
| INT8+Decomp | 8  | 0.0853 | 93.79   | N/A    | N/A  | N/A     | N/A    |
| BF16        | 32 | 0.0261 | 1227.96 | 0.0261 | 1.00 | 1227.96 | 1.000x |
| NF4         | 32 | 0.0486 | 658.65  | 0.0546 | 1.11 | 585.91  | 1.124x |
| NF4+DQ      | 32 | 0.0577 | 555.06  | 0.0665 | 1.13 | 481.04  | 1.154x |
| INT8        | 32 | 0.0545 | 586.26  | N/A    | N/A  | N/A     | N/A    |
| INT8+Decomp | 32 | 0.0864 | 370.51  | N/A    | N/A  | N/A     | N/A    |
</details>

<details>
<summary>Qwen 2.5 32B Instruct</summary>

|             | Batch Size | Mean Latency (s) <sub>v0.45.0.dev</sub> | Throughput <sub>v0.45.0.dev</sub> |
|-------------|------------|-----------------------------------------|-----------------------------------|
| BF16        | 1  | 0.0508 | 19.67  |
| NF4         | 1  | 0.0707 | 14.14  |
| NF4+DQ      | 1  | 0.0860 | 11.63  |
| INT8        | 1  | 0.1031 | 9.70   |
| INT8+Decomp | 1  | 0.1820 | 5.49   |
| BF16        | 8  | 0.0525 | 152.50 |
| NF4         | 8  | 0.1154 | 69.35  |
| NF4+DQ      | 8  | 0.1209 | 66.19  |
| INT8        | 8  | 0.1078 | 74.24  |
| INT8+Decomp | 8  | 0.1958 | 40.87  |
| BF16        | 32 | 0.0547 | 584.54 |
| NF4         | 32 | 0.1246 | 256.84 |
| NF4+DQ      | 32 | 0.1298 | 246.47 |
| INT8        | 32 | 0.1056 | 302.96 |
| INT8+Decomp | 32 | 0.2027 | 157.83 |
</details>

<details>
<summary>Llama 3.1 70B</summary>

|             | Batch Size | Mean Latency (s) <sub>v0.45.0.dev</sub> | Throughput <sub>v0.45.0.dev</sub> |
|-------------|------------|-----------------------------------------|-----------------------------------|
| NF4         | 1  | 0.0833 | 12.00  |
| NF4+DQ      | 1  | 0.1052 | 9.50   |
| INT8        | 1  | 0.1294 | 7.73   |
| INT8+Decomp | 1  | 0.1985 | 5.04   |
| NF4         | 8  | 0.2348 | 34.07  |
| NF4+DQ      | 8  | 0.2423 | 33.01  |
| INT8        | 8  | 0.1313 | 60.94  |
| INT8+Decomp | 8  | 0.2052 | 38.99  |
| NF4         | 32 | 0.2491 | 128.46 |
| NF4+DQ      | 32 | 0.2580 | 124.04 |
| INT8        | 32 | 0.1314 | 243.45 |
| INT8+Decomp | 32 | 0.2189 | 146.19 |
</details>

#### Software Configuration
We focus on the default PyTorch CUDA backend in 🤗 [`optimum-benchmark`](https://github.com/huggingface/optimum-benchmark). We used commit [`6e6b1036`](https://github.com/huggingface/optimum-benchmark/commit/6e6b10363f3ac65926881f2c6a6113b6cefc06cd).

For all hardware configurations, we used the following dependencies:
* `transformers==4.46.3`
* `accelerate==1.1.1`
* `tokenizers==0.20.3`
* `torch==2.5.1`
* `bitsandbytes==0.44.1`
* `bitsandbytes==0.45.0.dev`

In the RTX 4090 setting, the CUDA 12.4 build of PyTorch is used. In the other settings we used the CUDA 12.1 build.