README_ORIGIN.md 7.61 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
<p align="center"><img src="https://avatars.githubusercontent.com/u/175231607?s=200&v=4" alt=""></p>
<h1 align="center">bitsandbytes</h1>
<p align="center">
    <a href="https://github.com/bitsandbytes-foundation/bitsandbytes/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/bitsandbytes-foundation/bitsandbytes.svg?color=blue"></a>
    <a href="https://pepy.tech/project/bitsandbytes"><img alt="Downloads" src="https://static.pepy.tech/badge/bitsandbytes/month"></a>
    <a href="https://github.com/bitsandbytes-foundation/bitsandbytes/actions/workflows/tests.yml"><img alt="Nightly Unit Tests" src="https://img.shields.io/github/actions/workflow/status/bitsandbytes-foundation/bitsandbytes/tests.yml?logo=github&label=Nightly%20Tests"></a>
    <a href="https://github.com/bitsandbytes-foundation/bitsandbytes/releases"><img alt="GitHub Release" src="https://img.shields.io/github/v/release/bitsandbytes-foundation/bitsandbytes"></a>
    <a href="https://pypi.org/project/bitsandbytes/"><img alt="PyPI - Python Version" src="https://img.shields.io/pypi/pyversions/bitsandbytes"></a>
</p>

`bitsandbytes` enables accessible large language models via k-bit quantization for PyTorch. We provide three main features for dramatically reducing memory consumption for inference and training:

* 8-bit optimizers uses block-wise quantization to maintain 32-bit performance at a small fraction of the memory cost.
* LLM.int8() or 8-bit quantization enables large language model inference with only half the required memory and without any performance degradation. This method is based on vector-wise quantization to quantize most features to 8-bits and separately treating outliers with 16-bit matrix multiplication.
* QLoRA or 4-bit quantization enables large language model training with several memory-saving techniques that don't compromise performance. This method quantizes a model to 4-bits and inserts a small set of trainable low-rank adaptation (LoRA) weights to allow training.

The library includes quantization primitives for 8-bit & 4-bit operations, through `bitsandbytes.nn.Linear8bitLt` and `bitsandbytes.nn.Linear4bit` and 8-bit optimizers through `bitsandbytes.optim` module.

## System Requirements
bitsandbytes has the following minimum requirements for all platforms:

* Python 3.9+
* [PyTorch](https://pytorch.org/get-started/locally/) 2.3+
  * _Note: While we aim to provide wide backwards compatibility, we recommend using the latest version of PyTorch for the best experience._

#### Accelerator support:

<small>Note: this table reflects the status of the current development branch. For the latest stable release, see the
[document in the 0.48.0 tag](https://github.com/bitsandbytes-foundation/bitsandbytes/blob/0.48.0/README.md#accelerator-support).
</small>

##### Legend:
🚧 = In Development,
〰️ = Partially Supported,
✅ = Supported,
❌ = Not Supported

<table>
  <thead>
    <tr>
      <th>Platform</th>
      <th>Accelerator</th>
      <th>Hardware Requirements</th>
      <th>LLM.int8()</th>
      <th>QLoRA 4-bit</th>
      <th>8-bit Optimizers</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td colspan="6">🐧 <strong>Linux, glibc >= 2.24</strong></td>
    </tr>
    <tr>
      <td align="right">x86-64</td>
      <td>◻️ CPU</td>
      <td>AVX2</td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td></td>
      <td>🟩 NVIDIA GPU <br><code>cuda</code></td>
      <td>SM60+ minimum<br>SM75+ recommended</td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td></td>
      <td>🟥 AMD GPU <br><code>cuda</code></td>
      <td>
        CDNA: gfx90a, gfx942<br>
        RDNA: gfx1100
      </td>
      <td>🚧</td>
      <td>🚧</td>
      <td>🚧</td>
    </tr>
    <tr>
      <td></td>
      <td>🟦 Intel GPU <br><code>xpu</code></td>
      <td>
        Data Center GPU Max Series<br>
        Arc A-Series (Alchemist)<br>
        Arc B-Series (Battlemage)
      </td>
      <td></td>
      <td></td>
      <td>〰️</td>
    </tr>
    <tr>
      <td></td>
      <td>🟪 Intel Gaudi <br><code>hpu</code></td>
      <td>Gaudi2, Gaudi3</td>
      <td></td>
      <td>〰️</td>
      <td></td>
    </tr>
    <tr>
      <td align="right">aarch64</td>
      <td>◻️ CPU</td>
      <td></td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td></td>
      <td>🟩 NVIDIA GPU <br><code>cuda</code></td>
      <td>SM75+</td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td colspan="6">🪟 <strong>Windows 11 / Windows Server 2019+</strong></td>
    </tr>
    <tr>
      <td align="right">x86-64</td>
      <td>◻️ CPU</td>
      <td>AVX2</td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td></td>
      <td>🟩 NVIDIA GPU <br><code>cuda</code></td>
      <td>SM60+ minimum<br>SM75+ recommended</td>
      <td></td>
      <td></td>
      <td></td>
    </tr>
    <tr>
      <td></td>
      <td>🟦 Intel GPU <br><code>xpu</code></td>
      <td>
        Arc A-Series (Alchemist) <br>
        Arc B-Series (Battlemage)
      </td>
      <td></td>
      <td></td>
      <td>〰️</td>
    </tr>
    <tr>
      <td colspan="6">🍎 <strong>macOS 14+</strong></td>
    </tr>
    <tr>
      <td align="right">arm64</td>
      <td>◻️ CPU</td>
      <td>Apple M1+</td>
      <td>🚧</td>
      <td>🚧</td>
      <td></td>
    </tr>
    <tr>
      <td></td>
      <td>⬜ Metal <br><code>mps</code></td>
      <td>Apple M1+</td>
      <td>🚧</td>
      <td>🚧</td>
      <td></td>
  </tbody>
</table>

## :book: Documentation
* [Official Documentation](https://huggingface.co/docs/bitsandbytes/main)
* 🤗 [Transformers](https://huggingface.co/docs/transformers/quantization/bitsandbytes)
* 🤗 [Diffusers](https://huggingface.co/docs/diffusers/quantization/bitsandbytes)
* 🤗 [PEFT](https://huggingface.co/docs/peft/developer_guides/quantization#quantize-a-model)

## :heart: Sponsors
The continued maintenance and development of `bitsandbytes` is made possible thanks to the generous support of our sponsors. Their contributions help ensure that we can keep improving the project and delivering valuable updates to the community.

<kbd><a href="https://hf.co" target="_blank"><img width="100" src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" alt="Hugging Face"></a></kbd>
&nbsp;
<kbd><a href="https://intel.com" target="_blank"><img width="100" src="https://avatars.githubusercontent.com/u/17888862?s=100&v=4" alt="Intel"></a></kbd>

## License
`bitsandbytes` is MIT licensed.

We thank Fabio Cannizzo for his work on [FastBinarySearch](https://github.com/fabiocannizzo/FastBinarySearch) which we use for CPU quantization.

## How to cite us
If you found this library useful, please consider citing our work:

### QLoRA

```bibtex
@article{dettmers2023qlora,
  title={Qlora: Efficient finetuning of quantized llms},
  author={Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:2305.14314},
  year={2023}
}
```

### LLM.int8()

```bibtex
@article{dettmers2022llmint8,
  title={LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale},
  author={Dettmers, Tim and Lewis, Mike and Belkada, Younes and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:2208.07339},
  year={2022}
}
```

### 8-bit Optimizers

```bibtex
@article{dettmers2022optimizers,
  title={8-bit Optimizers via Block-wise Quantization},
  author={Dettmers, Tim and Lewis, Mike and Shleifer, Sam and Zettlemoyer, Luke},
  journal={9th International Conference on Learning Representations, ICLR},
  year={2022}
}
```