test_generation.py 4.07 KB
Newer Older
1
from itertools import product
Aarni Koskela's avatar
Aarni Koskela committed
2
import math
3

Aarni Koskela's avatar
Aarni Koskela committed
4
5
import pytest
import torch
6

Aarni Koskela's avatar
Aarni Koskela committed
7
8
from tests.helpers import TRUE_FALSE, describe_dtype, id_formatter

9
10
transformers = pytest.importorskip("transformers")

Tim Dettmers's avatar
Tim Dettmers committed
11
12

def get_4bit_config():
13
  return transformers.BitsAndBytesConfig(
Tim Dettmers's avatar
Tim Dettmers committed
14
15
16
17
18
19
20
21
22
23
    load_in_4bit=True,
    load_in_8bit=False,
    llm_int8_threshold=6.0,
    llm_int8_has_fp16_weight=False,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type='nf4',
  )


24
25
26
27
28
29
30
def get_model_and_tokenizer(config):
    model_name_or_path, quant_type = config
    bnb_config = get_4bit_config()
    if quant_type == '16bit':
        bnb_config.load_in_4bit = False
    else:
        bnb_config.bnb_4bit_quant_type= quant_type
31
    model = transformers.AutoModelForCausalLM.from_pretrained(model_name_or_path,
32
33
34
35
36
        quantization_config=bnb_config,
        max_memory={0:'48GB'},
        device_map='auto',
        torch_dtype=torch.bfloat16
        ).eval()
Tim Dettmers's avatar
Tim Dettmers committed
37

38
39
40
    tokenizer = transformers.AutoTokenizer.from_pretrained(model_name_or_path)

    return model, tokenizer
Tim Dettmers's avatar
Tim Dettmers committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

def get_prompt_for_generation_eval(text, add_roles=True):
    description = (
        "A chat between a curious human and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions."
    )
    if add_roles:
        prompt = f'{description} ### Human: {text} ### Assistant:'
    else:
        prompt = f'{description} {text}'
    return prompt

def generate(model, tokenizer, text, generation_config, prompt_func=get_prompt_for_generation_eval):
    text = prompt_func(text)
    inputs = tokenizer(text, return_tensors="pt").to('cuda:0')
    outputs = model.generate(inputs=inputs['input_ids'], generation_config=generation_config)
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

59
models = ['huggyllama/llama-7b', 'bigscience/bloom-1b7']
60
dtypes = ['nf4', 'fp4']
Aarni Koskela's avatar
Aarni Koskela committed
61
62

@pytest.fixture(scope='session', params=product(models, dtypes))
63
64
def model_and_tokenizer(request):
    model, tokenizer = get_model_and_tokenizer(request.param)
65
    yield request.param, model, tokenizer
66
67
68
    del model


Aarni Koskela's avatar
Aarni Koskela committed
69
70
71
72
73
@pytest.mark.parametrize("DQ", TRUE_FALSE, ids=id_formatter("dq"))
@pytest.mark.parametrize("inference_kernel", TRUE_FALSE, ids=id_formatter("inference_kernel"))
@pytest.mark.parametrize("dtype", [torch.float16], ids=describe_dtype)
@pytest.mark.slow
def test_pi(requires_cuda, model_and_tokenizer, inference_kernel, DQ, dtype):
74
    fixture_config, model, tokenizer = model_and_tokenizer
Tim Dettmers's avatar
Tim Dettmers committed
75
76

    generation_config = transformers.GenerationConfig(
77
        max_new_tokens=20,
Tim Dettmers's avatar
Tim Dettmers committed
78
79
80
81
        do_sample=True,
        top_p=0.9,
        temperature=0.7,
    )
82
    generation_config.max_new_tokens = 20
Tim Dettmers's avatar
Tim Dettmers committed
83
84
85
86
87


    #text = 'Please write down the first 50 digits of pi.'
    #text = get_prompt_for_generation_eval(text)
    #text += ' Sure, here the first 50 digits of pi: 3.14159'
88
    n_cases = 6
Tim Dettmers's avatar
Tim Dettmers committed
89
    text = '3.14159'
90
91
    if hasattr(model.config, 'quantization_config'):
        model.config.quantization_config.bnb_4bit_compute_dtype = dtype
92
        model.config.quantization_config.bnb_4bit_use_double_quant = DQ
Tim Dettmers's avatar
Tim Dettmers committed
93

94
95
    if not inference_kernel:
        text = [text]*n_cases
Tim Dettmers's avatar
Tim Dettmers committed
96
    inputs = tokenizer(text, return_tensors="pt").to('cuda:0')
97
98
99
100
101
102
103
104
105
106
107
108
109
    x = inputs['input_ids']
    outputs = []
    if inference_kernel:
        for i in range(n_cases):
            output = model.generate(x, generation_config=generation_config)
            textout = tokenizer.decode(output[0], skip_special_tokens=True)
            outputs.append(textout)
    else:
        outputs = model.generate(x, generation_config=generation_config)
        outputs = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs]


    assert len(outputs) == n_cases
110
    failure_count = 0
111
112
113
    for i in range(n_cases):
        if not outputs[i][:len(str(math.pi))] == str(math.pi):
            failure_count += 1
114
115
    failure_max = (2 if fixture_config[0] == 'huggyllama/llama-7b' else 4)
    if failure_count > failure_max:
116
117
118
119
        print(math.pi)
        for out in outputs:
            print(out)
        raise ValueError(f'Failure count: {failure_count}/{n_cases}')