test_linear4bit.py 3.67 KB
Newer Older
Ruslan Svirschevski's avatar
Ruslan Svirschevski committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
from contextlib import nullcontext
from itertools import product
from tempfile import TemporaryDirectory

import pytest
import torch

import bitsandbytes as bnb
from bitsandbytes import functional as F
from bitsandbytes.nn.modules import Linear4bit


@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
@pytest.mark.parametrize(
    "quant_type, compress_statistics, bias",
    list(product(["nf4", "fp4"], [False, True], [False, True])),
)
def test_linear4_state_dict(quant_type, compress_statistics, bias):
    original_dtype = torch.float16
    compute_dtype = None
    device = "cuda"
    layer_shape = (300, 400)

    linear = torch.nn.Linear(*layer_shape, dtype=original_dtype)  # original layer

    # Quantizing original layer
    linear_q = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
        device=device,
    )
    new_weight = bnb.nn.Params4bit(data=linear.weight, requires_grad=False)
    linear_q.weight = new_weight.to(device)
    if bias:
        linear_q.bias.data = linear.bias.data.to(device)

    sd = linear_q.state_dict()

    # restoring from state_dict:

    sd = linear_q.state_dict()
    bias_data2 = sd.pop("bias", None)
    weight_data2 = sd.pop("weight")

    weight2 = bnb.nn.Params4bit.from_prequantized(quantized_stats=sd, data=weight_data2)

    linear_q2 = bnb.nn.Linear4bit(
        linear.in_features,
        linear.out_features,
        bias=bias,
        compute_dtype=compute_dtype,
        compress_statistics=compress_statistics,
        quant_type=quant_type,
        device=device,
    )
    linear_q2.weight = weight2.to(device)
    if bias:
        linear_q2.bias.data = bias_data2

    # matching
    a, b = linear_q.weight, linear_q2.weight

    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)
    
    q0 = a.quant_state
    q1 = b.quant_state
    for attr in ('code', 'dtype', 'blocksize', 'absmax'):
        c, d = getattr(q0, attr), getattr(q1, attr)
        if isinstance(c, torch.Tensor):
            assert torch.equal(c, d)
        else:
            assert c == d, f"{c} != {d}"

    if q0.state2 is not None:
        for attr in ('code', 'dtype', 'blocksize', 'absmax'):
            c, d = getattr(q0.state2, attr), getattr(q1.state2, attr)
            if isinstance(c, torch.Tensor):
                assert torch.equal(c, d)
            else:
                assert c == d, f"{c} != {d}"

    if bias:
        a, b = linear_q.bias, linear_q2.bias
        assert a.device == b.device
        assert a.dtype == b.dtype
        assert torch.equal(a, b)

    # Forward test
    x = torch.rand(42, linear_q.shape[-1], device=device)
    a = linear_q(x)
    b = linear_q2(x)
    assert a.device == b.device
    assert a.dtype == b.dtype
    assert torch.equal(a, b)

    # Saved size ratio test. Target set for layer_shape == (300, 400) w/ bias
    with TemporaryDirectory() as tmpdir:
        state_path_4bit = os.path.join(tmpdir, "state_4bit.pth")
        state_path = os.path.join(tmpdir, "state.pth")
        torch.save(linear.state_dict(), state_path)
        torch.save(linear_q.state_dict(), state_path_4bit)

        size_orig, size_4 = os.path.getsize(state_path), os.path.getsize(
            state_path_4bit
        )
        size_ratio = size_4 / size_orig
        target_compression = 0.143 if original_dtype == torch.float32 else 0.285
        ratio_error_msg = f"quantized_size {size_4:,} is larger on disk than {target_compression:.2%} of original size {size_orig:,}"
        assert size_ratio < target_compression, ratio_error_msg