test_autograd.py 11.9 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import pytest

import torch
import bitsandbytes as bnb

from itertools import product

n = 1
k = 25
dim1 = torch.randint(16,64, size=(n,)).tolist()
dim2 = torch.randint(32,96, size=(n,)).tolist()
dim3 = torch.randint(32,96, size=(n,)).tolist()
dim4 = torch.randint(32,96, size=(n,)).tolist()
funcs = [(torch.bmm, bnb.bmm_cublas), (torch.matmul, bnb.matmul_cublas)]
str_funcs = ['bmm', 'matmul']
req_grad = [(False, False), (True, False), (True, True), (False, True)]
req_grad_str = ['FF', 'TF', 'TT', 'FT']
transpose = [(False, False), (False, True), (True, True), (True, False)]
str_transpose = ['FF', 'FT', 'TT', 'TF']
dtype = [torch.float32, torch.float16]
values = list(product(dim1,dim2,dim3,dim4,funcs, dtype, req_grad, transpose))
str_values = list(product(dim1,dim2,dim3,dim4,str_funcs, dtype, req_grad_str, str_transpose))
names = ['dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}'.format(*vals) for vals in str_values]
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose", values, ids=names)
def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
26
27
    if dim2 > 0:
        dim2 = dim2 - (dim2 % 16)
Tim Dettmers's avatar
Tim Dettmers committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    dim3 = dim3 - (dim3 % 16)
    dim4 = dim4 - (dim4 % 16)
    for i in range(k):

        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
            dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
            dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
            A = torch.randn(size=dimA, device='cuda', requires_grad=req_grad[0])
            B = torch.randn(size=dimB, device='cuda', requires_grad=req_grad[1])
            target = torch.randn(size=(dim2, dim4), device='cuda', requires_grad=req_grad[1])
            torch.nn.init.xavier_uniform_(B)

            if not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
                out_bnb = funcs[1](A, B)
            elif not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
                out_bnb = funcs[1](A, B.t())
            elif transpose[0] and not transpose[1]:
                out_torch = funcs[0](A.t(), B)
                out_bnb = funcs[1](A.t(), B)
            elif transpose[0] and transpose[1]:
                out_torch = funcs[0](A.t(), B.t())
                out_bnb = funcs[1](A.t(), B.t())

            n = out_bnb.numel()
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
            assert (idx==0).sum().item() < n*0.0175
            idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
            assert (idx==0).sum().item() < n*0.001

            if any(req_grad):
                out_bnb.data.copy_(out_torch)
                torch.cuda.synchronize()
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None

                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None

            if req_grad[0]:
                torch.testing.assert_allclose(gradA1, gradA2, atol=0.015, rtol=0.1)
            if req_grad[1]:
                n = gradB1.numel()
                idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
                assert (idx==0).sum().item() < n*0.1
                idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
                assert (idx==0).sum().item() < n*0.02
                torch.testing.assert_allclose(gradB1, gradB2, atol=0.18, rtol=0.3)

        # batched matrix multiply
        if funcs[0] in [torch.bmm, torch.matmul]:
            A = torch.randn(size=(dim1, dim2, dim3), device='cuda', requires_grad=req_grad[0])
            B = torch.randn(size=(dim1, dim3, dim4), device='cuda', requires_grad=req_grad[1])
            target = torch.randn(size=(dim1, dim2, dim4), device='cuda', requires_grad=req_grad[1])
            torch.nn.init.xavier_uniform_(B)

            out_torch = funcs[0](A, B)
            out_bnb = funcs[1](A, B)

            n = out_bnb.numel()
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
            assert (idx==0).sum().item() < n*0.01
            torch.testing.assert_allclose(out_bnb, out_torch, atol=0.027, rtol=0.2)

            if any(req_grad):
                out_bnb.data.copy_(out_torch)
                torch.cuda.synchronize()
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None

                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None

            if req_grad[0]:
                torch.testing.assert_allclose(gradA1, gradA2, atol=0.015, rtol=0.1)
            if req_grad[1]:
                n = gradB1.numel()
                idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
                assert (idx==0).sum().item() < n*0.1
                idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
                assert (idx==0).sum().item() < n*0.02

        if funcs[0] in [torch.matmul]:
            dim1 = dim1 - (dim1 % 16)
            A = torch.randn(size=(dim1, dim2, dim3), device='cuda', requires_grad=req_grad[0])
            dimB = (dim4, dim3) if transpose[1] else (dim3, dim4)
            B = torch.randn(size=dimB, device='cuda', requires_grad=req_grad[1])
            target = torch.randn(size=(dim1, dim2, dim4), device='cuda', requires_grad=req_grad[1])
            torch.nn.init.xavier_uniform_(B)

            if transpose[1]:
                out_torch = funcs[0](A, B.t())
                out_bnb = funcs[1](A, B.t())
            else:
                out_torch = funcs[0](A, B)
                out_bnb = funcs[1](A, B)

            n = out_bnb.numel()
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
            assert (idx==0).sum().item() < n*0.0175
            idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
            assert (idx==0).sum().item() < n*0.001

            if any(req_grad):
                out_bnb.data.copy_(out_torch)
                torch.cuda.synchronize()
                loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                loss_bnb.backward()
                gradA1 = A.grad
                gradB1 = B.grad
                A.grad = None
                B.grad = None

                loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
                loss_torch.backward()
                gradA2 = A.grad
                gradB2 = B.grad
                A.grad = None
                B.grad = None

            if req_grad[0]:
                torch.testing.assert_allclose(gradA1, gradA2, atol=0.015, rtol=0.1)
            if req_grad[1]:
                n = gradB1.numel()
                idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
                assert (idx==0).sum().item() < n*0.1
                idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
                assert (idx==0).sum().item() < n*0.02


n = 1
k = 3
dim1 = torch.randint(16,64, size=(n,)).tolist()
dim2 = torch.randint(32,96, size=(n,)).tolist()
dim3 = torch.randint(32,96, size=(n,)).tolist()
dim4 = torch.randint(32,96, size=(n,)).tolist()

183
dim2.append(0)
Tim Dettmers's avatar
Tim Dettmers committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#dim1 = (17,)
#dim2 = (7,)
#dim3 = (37,)
#dim4 = (23,)

decomp = [0.0, 6.0]
funcs = [(torch.matmul, bnb.matmul)]
str_funcs = ['matmul']
req_grad = [(False, False), (True, False), (True, True), (False, True)]
req_grad_str = ['FF', 'TF', 'TT', 'FT']
transpose = [(False, True), (False, False)]
str_transpose = ['NT', 'NN']
dtype = [torch.float16]
has_fp16_weights = [True, False]
values = list(product(dim1,dim2,dim3,dim4,funcs, dtype, req_grad, transpose, decomp, has_fp16_weights))
str_values = list(product(dim1,dim2,dim3,dim4,str_funcs, dtype, req_grad_str, str_transpose, decomp, has_fp16_weights))
names = ['dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}_decomp_{8}_has_fp16_weights_{9}'.format(*vals) for vals in str_values]
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights", values, ids=names)
def test_matmullt(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights):
    dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
    dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
    outlier_dim = torch.randint(0, dimA[1], size=(dimA[1]//8,), device='cuda')

    for i in range(k):

        # normal multiply
        if funcs[0] in [torch.mm, torch.matmul]:
            A = torch.randn(size=dimA, device='cuda', requires_grad=req_grad[0], dtype=dtype)
            if decomp == 6.0:
                with torch.no_grad():
                    A[:, outlier_dim] = 6.0
            B = torch.randn(size=dimB, device='cuda', requires_grad=req_grad[1], dtype=dtype)
            target = torch.randn(size=(dim2, dim4), device='cuda', requires_grad=req_grad[1], dtype=dtype)
            torch.nn.init.xavier_uniform_(B)
            B2 = B.clone()

            state = bnb.MatmulLtState()
            state.threshold = decomp
            state.has_fp16_weights = has_fp16_weights
            if not has_fp16_weights:
                if not transpose[0] and not transpose[1]: B2 = B2.t().contiguous()
                state.CB, CBt, state.SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B2)
                B2 = state.CB

            if not transpose[0] and transpose[1]:
                out_torch = funcs[0](A, B.t())
                out_bnb = funcs[1](A, B2, state=state)
            elif not transpose[0] and not transpose[1]:
                out_torch = funcs[0](A, B)
                out_bnb = funcs[1](A, B2.t(), state=state)

            n = out_bnb.numel()
            err = torch.abs(out_bnb-out_torch).mean().item()
            #print(f'abs error {err:.4f}')
            idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
239
            assert (idx==0).sum().item() <= n*0.0175
Tim Dettmers's avatar
Tim Dettmers committed
240
            idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
241
            assert (idx==0).sum().item() <= n*0.001
Tim Dettmers's avatar
Tim Dettmers committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

            if has_fp16_weights:
                if any(req_grad):
                    out_bnb.data.copy_(out_torch)
                    torch.cuda.synchronize()
                    loss_bnb = torch.nn.functional.mse_loss(out_bnb, target).mean()
                    loss_bnb.backward()
                    gradA1 = A.grad
                    gradB1 = B.grad
                    A.grad = None
                    B.grad = None

                    loss_torch = torch.nn.functional.mse_loss(out_torch, target).mean()
                    loss_torch.backward()
                    gradA2 = A.grad
                    gradB2 = B.grad
                    A.grad = None
                    B.grad = None

                if req_grad[0]:
                    torch.testing.assert_allclose(gradA1, gradA2, atol=0.015, rtol=0.1)
                if req_grad[1]:
                    n = gradB1.numel()
265
266
267
268
269
270
                    if dim2 > 0:
                        assert torch.abs(gradB1).sum() > 0.0
                        assert torch.abs(gradB2).sum() > 0.0
                    else:
                        assert torch.abs(gradB1).sum() == 0.0
                        assert torch.abs(gradB2).sum() == 0.0
Tim Dettmers's avatar
Tim Dettmers committed
271
                    idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
272
                    assert (idx==0).sum().item() <= n*0.1
Tim Dettmers's avatar
Tim Dettmers committed
273
                    idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
274
                    assert (idx==0).sum().item() <= n*0.02
Tim Dettmers's avatar
Tim Dettmers committed
275
276
                    torch.testing.assert_allclose(gradB1, gradB2, atol=0.18, rtol=0.3)