test_ops.py 10.2 KB
Newer Older
1
2
3
4
5
6
from math import prod

import pytest
import torch

import bitsandbytes
7
from tests.helpers import TRUE_FALSE, get_available_devices, id_formatter
8
9
10


class TestLLMInt8Ops:
11
    @pytest.mark.parametrize("device", get_available_devices())
12
13
14
15
16
17
18
19
20
21
22
    def test_int8_linear_matmul(self, device):
        A = torch.randint(-128, 127, (10, 20), dtype=torch.int8, device=device)
        B = torch.randint(-128, 127, (30, 20), dtype=torch.int8, device=device)
        out = torch.ops.bitsandbytes.int8_linear_matmul.default(A, B)

        assert out.shape == (10, 30)
        assert out.dtype == torch.int32
        assert out.device == A.device

        torch.library.opcheck(torch.ops.bitsandbytes.int8_linear_matmul.default, (A, B))

23
    @pytest.mark.parametrize("device", get_available_devices())
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    def test_int8_linear_matmul_out(self, device):
        A = torch.randint(-128, 127, (10, 20), dtype=torch.int8, device=device)
        B = torch.randint(-128, 127, (30, 20), dtype=torch.int8, device=device)

        out = torch.empty((10, 30), dtype=torch.int32, device=device)
        torch.ops.bitsandbytes.int8_linear_matmul.out(A, B, out)

        assert out.shape == (10, 30)
        assert out.dtype == torch.int32
        assert out.device == A.device

        torch.library.opcheck(torch.ops.bitsandbytes.int8_linear_matmul.out, (A, B, out))

    @pytest.mark.parametrize("threshold", [0.0, 6.0])
38
    @pytest.mark.parametrize("device", get_available_devices())
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    def test_int8_vectorwise_quant(self, threshold, device):
        A = torch.randn(10, 20, dtype=torch.float16, device=device)
        A[1][0] = 1000.0

        out_row, row_stats, outlier_cols = torch.ops.bitsandbytes.int8_vectorwise_quant(A, threshold=threshold)

        assert out_row.shape == (10, 20)
        assert out_row.dtype == torch.int8
        assert out_row.device == A.device
        assert row_stats.shape == (10,)
        assert row_stats.dtype == torch.float32
        assert row_stats.device == A.device

        if threshold > 0.0:
            assert outlier_cols is not None
            assert outlier_cols.dim() == 1
            assert outlier_cols.shape[0] <= A.shape[1]
            assert outlier_cols.device == A.device
        else:
            assert outlier_cols is None

        torch.library.opcheck(torch.ops.bitsandbytes.int8_vectorwise_quant, (A,))

        torch.library.opcheck(torch.ops.bitsandbytes.int8_vectorwise_quant, (A, threshold))

64
    @pytest.mark.parametrize("device", get_available_devices())
65
66
67
68
69
70
71
72
73
74
75
76
    def test_int8_mm_dequant(self, device):
        A = torch.randint(-128, 127, (256, 256), dtype=torch.int32, device=device)
        row_stats = torch.randn(256, dtype=torch.float32, device=device)
        col_stats = torch.randn(256, dtype=torch.float32, device=device)
        out = torch.ops.bitsandbytes.int8_mm_dequant(A, row_stats, col_stats)

        assert out.shape == A.shape
        assert out.dtype == torch.float16
        assert out.device == A.device

        torch.library.opcheck(torch.ops.bitsandbytes.int8_mm_dequant, (A, row_stats, col_stats))

77
    @pytest.mark.parametrize("device", get_available_devices())
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=id_formatter("dtype"))
    @pytest.mark.parametrize("has_bias", TRUE_FALSE)
    def test_int8_scaled_mm(self, device, dtype, has_bias):
        A = torch.randint(-128, 127, (10, 20), dtype=torch.int8, device=device)
        B = torch.randint(-128, 127, (30, 20), dtype=torch.int8, device=device)
        row_stats = torch.randn(10, dtype=torch.float32, device=device)
        col_stats = torch.randn(30, dtype=torch.float32, device=device)
        bias = torch.randn(30, dtype=dtype, device=device) if has_bias else None
        out = torch.ops.bitsandbytes.int8_scaled_mm(A, B, row_stats, col_stats, bias=bias, dtype=dtype)

        assert out.shape == (10, 30)
        assert out.dtype == dtype
        assert out.device == A.device

        torch.library.opcheck(torch.ops.bitsandbytes.int8_scaled_mm, (A, B, row_stats, col_stats, bias, dtype))


class TestInt8BlockwiseQuantOps:
96
    @pytest.mark.parametrize("device", get_available_devices())
97
98
99
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=id_formatter("dtype"))
    @pytest.mark.parametrize("blocksize", [64, 128, 256, 512])
    def test_quantize_blockwise(self, device, dtype, blocksize):
100
101
102
103
104
105
        if device == "cpu":
            if dtype != torch.float32:
                pytest.skip("CPU implementation is only available for float32")

            if blocksize != 256:
                pytest.skip("CPU implementation is slow; only test blocksize=256")
106
107
108
109
110
111
112
113
114
115
116
117
118
119

        code = bitsandbytes.functional.create_dynamic_map().to(device)
        A = torch.randn(1024, 1024, dtype=dtype, device=device)
        out, absmax = torch.ops.bitsandbytes.quantize_blockwise(A, code, blocksize)

        assert out.shape == A.shape
        assert out.dtype == torch.uint8
        assert out.device == A.device

        assert absmax.device == A.device
        assert absmax.dtype == torch.float32

        torch.library.opcheck(torch.ops.bitsandbytes.quantize_blockwise, (A, code, blocksize))

120
    @pytest.mark.parametrize("device", get_available_devices())
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=id_formatter("dtype"))
    @pytest.mark.parametrize("blocksize", [64, 128, 256, 512])
    def test_dequantize_blockwise(self, device, dtype, blocksize):
        if device == "cpu" and dtype != torch.float32:
            pytest.skip("CPU implementation is only available for float32")

        A = torch.randint(0, 255, (1024, 1024), dtype=torch.uint8, device=device)
        code = bitsandbytes.functional.create_dynamic_map().to(device, dtype=torch.float32)

        n = A.numel()
        blocks = -(n // -blocksize)
        absmax = torch.randn((blocks,), device=device, dtype=torch.float32)

        out = torch.ops.bitsandbytes.dequantize_blockwise.default(A, absmax, code, blocksize, dtype)

        assert out.shape == A.shape
        assert out.dtype == dtype
        assert out.device == A.device

        torch.library.opcheck(torch.ops.bitsandbytes.dequantize_blockwise.default, (A, absmax, code, blocksize, dtype))


class Test4bitBlockwiseQuantOps:
144
    @pytest.mark.parametrize("device", get_available_devices())
145
146
147
148
149
150
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=id_formatter("dtype"))
    @pytest.mark.parametrize("storage_dtype", [torch.uint8, torch.bfloat16], ids=id_formatter("storage_dtype"))
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
    @pytest.mark.parametrize("blocksize", [64, 128, 256, 512])
    def test_quantize_4bit(self, device, dtype, storage_dtype, quant_type, blocksize):
        if device == "cpu" and quant_type != "nf4":
151
            pytest.xfail("CPU implementation is only available for nf4")
152

Matthew Douglas's avatar
Matthew Douglas committed
153
154
155
        if storage_dtype != torch.uint8:
            pytest.xfail("Known issue with storage_dtype != uint8")

156
157
158
159
160
161
162
163
164
165
166
167
        A = torch.randn(1024, 1024, dtype=dtype, device=device)

        out, absmax = torch.ops.bitsandbytes.quantize_4bit(A, blocksize, quant_type, storage_dtype)

        assert out.device == A.device
        assert out.dtype == storage_dtype

        assert absmax.device == A.device
        assert absmax.dtype == torch.float32

        torch.library.opcheck(torch.ops.bitsandbytes.quantize_4bit, (A, blocksize, quant_type, storage_dtype))

168
    @pytest.mark.parametrize("device", get_available_devices())
169
170
171
172
173
174
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=id_formatter("dtype"))
    @pytest.mark.parametrize("storage_dtype", [torch.uint8, torch.bfloat16], ids=id_formatter("storage_dtype"))
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
    @pytest.mark.parametrize("blocksize", [64, 128, 256, 512])
    def test_dequantize_4bit(self, device, dtype, storage_dtype, quant_type, blocksize):
        if device == "cpu":
175
176
177
178
179
            if quant_type != "nf4":
                pytest.xfail("CPU implementation is only available for nf4")

            if storage_dtype != torch.uint8:
                pytest.xfail("CPU implementation only supports uint8 storage")
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

        shape = (128, 128)

        n = prod(shape)
        blocks = -(n // -blocksize)
        quantized_shape = ((n + 1) // (storage_dtype.itemsize * 2), 1)

        A = (
            torch.randint(0, 255, ((n + 1) // 2,), dtype=torch.uint8, device=device)
            .view(storage_dtype)
            .reshape(quantized_shape)
            .contiguous()
        )

        absmax = torch.randn((blocks,), dtype=torch.float32, device=device)

        out = torch.ops.bitsandbytes.dequantize_4bit.default(A, absmax, blocksize, quant_type, shape, dtype)

        assert out.device == A.device
        assert out.shape == shape

        torch.library.opcheck(
            torch.ops.bitsandbytes.dequantize_4bit.default, (A, absmax, blocksize, quant_type, shape, dtype)
        )

205
    @pytest.mark.parametrize("device", get_available_devices())
206
207
208
209
210
211
    @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float32], ids=id_formatter("dtype"))
    @pytest.mark.parametrize("storage_dtype", [torch.uint8, torch.bfloat16], ids=id_formatter("storage_dtype"))
    @pytest.mark.parametrize("quant_type", ["fp4", "nf4"])
    @pytest.mark.parametrize("blocksize", [64, 128, 256, 512])
    def test_gemv_4bit(self, device, dtype, storage_dtype, quant_type, blocksize):
        if device == "cpu":
212
            pytest.xfail("CPU implementation is not available")
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

        out_features = 1024
        in_features = 256

        A = torch.randn((1, 1, in_features), dtype=dtype, device=device)
        B = torch.randn((out_features, in_features), dtype=dtype, device=A.device)
        B_q, absmax = torch.ops.bitsandbytes.quantize_4bit(B, blocksize, quant_type, storage_dtype)
        code = bitsandbytes.functional.get_4bit_type(quant_type, device=A.device, blocksize=blocksize)

        out = torch.ops.bitsandbytes.gemv_4bit.default(A, B_q, B.shape, absmax, code, blocksize)

        assert out.device == A.device
        assert out.dtype == dtype
        assert out.shape == (1, 1, out_features)
        assert out.isreal().all()

        torch.library.opcheck(torch.ops.bitsandbytes.gemv_4bit.default, (A, B_q, B.shape, absmax, code, blocksize))