test_functional.py 72.4 KB
Newer Older
Tim Dettmers's avatar
Tim Dettmers committed
1
2
3
import math
import random
import time
Tim Dettmers's avatar
Tim Dettmers committed
4
5
from itertools import product

6
7
8
import einops
import pytest
import torch
Tim Dettmers's avatar
Tim Dettmers committed
9
import numpy as np
10
11

import bitsandbytes as bnb
Tim Dettmers's avatar
Tim Dettmers committed
12
from bitsandbytes import functional as F
Tim Dettmers's avatar
Tim Dettmers committed
13
from scipy.stats import norm
Tim Dettmers's avatar
Tim Dettmers committed
14

15
torch.set_printoptions(
Tim Dettmers's avatar
Tim Dettmers committed
16
    precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
17
)
Tim Dettmers's avatar
Tim Dettmers committed
18
19
k = 20

20

21
def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0):
Tim Dettmers's avatar
Tim Dettmers committed
22
    idx = torch.isclose(a, b, rtol, atol)
23
    sumval = (idx == 0).sum().item()
Tim Dettmers's avatar
Tim Dettmers committed
24
    if sumval > count:
25
        print(f"Too many values not close: assert {sumval} < {count}")
Tim Dettmers's avatar
Tim Dettmers committed
26
27
        torch.testing.assert_allclose(a, b, rtol, atol)

28

Tim Dettmers's avatar
Tim Dettmers committed
29
30
class FFN(torch.nn.Module):
    def __init__(self, input_features, hidden_size, bias=True):
31
        super().__init__()
Tim Dettmers's avatar
Tim Dettmers committed
32
33
34
35
36
37
38
39
40
41
42
43
        self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
        self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)

        with torch.no_grad():
            torch.nn.init.xavier_uniform_(self.fc1.weight)
            torch.nn.init.xavier_uniform_(self.fc2.weight)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

44

45
class Timer:
Tim Dettmers's avatar
Tim Dettmers committed
46
47
48
49
50
    def __init__(self):
        self.starts = {}
        self.ends = {}
        self.agg = {}

51
    def tick(self, name="default"):
Tim Dettmers's avatar
Tim Dettmers committed
52
53
54
55
56
57
58
        if name not in self.starts:
            self.starts[name] = torch.cuda.Event(enable_timing=True)
            self.ends[name] = torch.cuda.Event(enable_timing=True)
            self.starts[name].record()
        else:
            ms = self.tock(name, evict=True, print_ms=False)

59
    def tock(self, name="default", evict=True, print_ms=True):
Tim Dettmers's avatar
Tim Dettmers committed
60
61
62
63
        if name in self.ends:
            self.ends[name].record()
            torch.cuda.synchronize()
            ms = self.starts[name].elapsed_time(self.ends[name])
64
65
            if name not in self.agg:
                self.agg[name] = 0.0
Tim Dettmers's avatar
Tim Dettmers committed
66
67
68
69
70
71
            self.agg[name] += ms
            if evict:
                self.starts.pop(name)
                self.ends.pop(name)

        if print_ms and name in self.agg:
72
            print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
Tim Dettmers's avatar
Tim Dettmers committed
73
74
75
76

        return self.agg[name]

    def reset(self):
77
        self.starts = {}
Tim Dettmers's avatar
Tim Dettmers committed
78
79
        self.ends = {}
        self.agg = {}
80
81
        print("Resetting benchmark data")

Tim Dettmers's avatar
Tim Dettmers committed
82

Tim Dettmers's avatar
Tim Dettmers committed
83
84
85
def setup():
    pass

86

Tim Dettmers's avatar
Tim Dettmers committed
87
88
89
def teardown():
    pass

90

91
92
93
@pytest.mark.parametrize(
    "dtype", [torch.float32, torch.float16], ids=["float", "half"]
)
Tim Dettmers's avatar
Tim Dettmers committed
94
def test_estimate_quantiles(dtype):
95
    A = torch.rand(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
96
97
98
    A = A.to(dtype)
    code = F.estimate_quantiles(A)

99
    percs = torch.linspace(1 / 512, 511 / 512, 256, device=A.device)
Tim Dettmers's avatar
Tim Dettmers committed
100
101
    torch.testing.assert_allclose(percs, code, atol=1e-3, rtol=1e-2)

102
    A = torch.randn(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
103
104
105
106
    A = A.to(dtype)
    code = F.estimate_quantiles(A)

    quantiles = torch.quantile(A.float(), percs)
107
    diff = torch.abs(code - quantiles)
Tim Dettmers's avatar
Tim Dettmers committed
108
109
110
111
112
    assert (diff > 5e-02).sum().item() == 0


def test_quantile_quantization():
    for i in range(100):
113
        A1 = torch.randn(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
114
115
116
        code = F.estimate_quantiles(A1)
        C = F.quantize_no_absmax(A1, code)
        A2 = F.dequantize_no_absmax(C, code)
117
        diff = torch.abs(A1 - A2).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
118
119
        assert diff < 0.0075

120
        A1 = torch.rand(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
121
122
123
        code = F.estimate_quantiles(A1)
        C = F.quantize_no_absmax(A1, code)
        A2 = F.dequantize_no_absmax(C, code)
124
        diff = torch.abs(A1 - A2).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
125
126
127
128
129
130
131
132
        torch.testing.assert_allclose(A1, A2, atol=5e-3, rtol=0)
        assert diff < 0.001


def test_dynamic_quantization():
    diffs = []
    reldiffs = []
    for i in range(100):
133
        A1 = torch.randn(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
134
135
        C, S = F.quantize(A1)
        A2 = F.dequantize(C, S)
136
137
        diff = torch.abs(A1 - A2)
        reldiff = diff / torch.abs(A1 + 1e-8)
Tim Dettmers's avatar
Tim Dettmers committed
138
139
140
        diffs.append(diff.mean().item())
        reldiffs.append(reldiff.mean().item())
        assert diff.mean().item() < 0.0135
141
142
    # print(sum(diffs)/len(diffs))
    # print(sum(reldiffs)/len(reldiffs))
Tim Dettmers's avatar
Tim Dettmers committed
143
144

    for i in range(100):
145
        A1 = torch.rand(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
146
147
        C, S = F.quantize(A1)
        A2 = F.dequantize(C, S)
148
        diff = torch.abs(A1 - A2).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
149
150
151
152
153
        torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
        assert diff < 0.004


def test_dynamic_blockwise_quantization():
154
155
156
157
158
159
    #print('')
    for blocksize in [4096, 2048, 1024, 512]:
        diffs = []
        reldiffs = []
        for i in range(100):
            A1 = torch.randn(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
160
161
            C, S = F.quantize_blockwise(A1, blocksize=blocksize)
            A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            diff = torch.abs(A1 - A2)
            reldiff = diff / torch.abs(A1 + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
        abserr = sum(diffs)/len(diffs)
        relerr = sum(reldiffs)/len(reldiffs)
        assert abserr < 0.011
        assert relerr < 0.018
        #print('randn', blocksize, sum(diffs)/len(diffs))
        #print('randn', blocksize, sum(reldiffs)/len(reldiffs))

        diffs = []
        for i in range(100):
            A1 = torch.rand(1024, 1024, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
176
177
            C, S = F.quantize_blockwise(A1, blocksize=blocksize)
            A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
178
179
180
181
            diff = torch.abs(A1 - A2)
            reldiff = diff / torch.abs(A1 + 1e-8)
            diffs.append(diff.mean().item())
            reldiffs.append(reldiff.mean().item())
Tim Dettmers's avatar
Tim Dettmers committed
182
            #torch.testing.assert_allclose(A1, A2, atol=1e-2, rtol=0)
183
184
185
186
187
188
        abserr = sum(diffs)/len(diffs)
        relerr = sum(reldiffs)/len(reldiffs)
        assert abserr < 0.0035
        assert relerr < 0.015
        #print('rand', blocksize, sum(diffs)/len(diffs))
        #print('rand', blocksize, sum(reldiffs)/len(reldiffs))
189

Tim Dettmers's avatar
Tim Dettmers committed
190

191
192
193

@pytest.mark.parametrize("blocksize", [4096, 2048, 1024, 512, 256, 128, 64])
def test_dynamic_blockwise_stochastic_quantization(blocksize):
Tim Dettmers's avatar
Tim Dettmers committed
194
195
196
    diffs = []
    reldiffs = []
    rand = torch.rand(1024).cuda()
197
    err = 0
Tim Dettmers's avatar
Tim Dettmers committed
198
    for i in range(100):
199
        A1 = torch.randn(1024, 1024, device="cuda")
200
201
202
203
        C1, S1 = F.quantize_blockwise(A1, rand=rand, blocksize=blocksize)
        C2, S2 = F.quantize_blockwise(A1, blocksize=blocksize)
        A2 = F.dequantize_blockwise(C1, S1, blocksize=blocksize)
        err += (A1-A2).abs().mean().item()/100
Tim Dettmers's avatar
Tim Dettmers committed
204
205
        # a maximunm distance of quantized values of 1
        torch.testing.assert_allclose(C1, C2, atol=1, rtol=0)
206
207
        fraction_smaller = (C1 < C2).float().sum() / C1.numel()
        fraction_larger = (C1 > C2).float().sum() / C1.numel()
208
209
        torch.testing.assert_allclose(fraction_larger, fraction_smaller, atol=0.01, rtol=0)
    assert err < 0.019
Tim Dettmers's avatar
Tim Dettmers committed
210
211


212
213
214
@pytest.mark.parametrize(
    "gtype", [torch.float32, torch.float16], ids=["float", "half"]
)
Tim Dettmers's avatar
Tim Dettmers committed
215
def test_percentile_clipping(gtype):
216
217
    gnorm_vec1 = torch.zeros(100, device="cuda")
    gnorm_vec2 = torch.zeros(100, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
218
219
    n = 4
    step = 0
220
    percentile = 5
Tim Dettmers's avatar
Tim Dettmers committed
221
    for i in range(k):
Tim Dettmers's avatar
Tim Dettmers committed
222
        step += 1
223
224
225
226
227
        g = torch.randn(n, n, dtype=gtype, device="cuda")
        gnorm1, clip2, gnorm_scale = F.percentile_clipping(
            g, gnorm_vec2, step, percentile=percentile
        )
        assert gnorm_scale == 1.0 if gnorm1 < clip2 else clip2 / gnorm1
Tim Dettmers's avatar
Tim Dettmers committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

        gnorm2 = torch.norm(g.float())
        if step == 1:
            gnorm_vec1[:] = gnorm2
        else:
            gnorm_vec1[step % 100] = gnorm2

        vals, idx = torch.sort(gnorm_vec1)
        clip1 = vals[percentile]

        torch.testing.assert_allclose(gnorm_vec1, torch.sqrt(gnorm_vec2))
        torch.testing.assert_allclose(clip1, clip2)
        torch.testing.assert_allclose(gnorm1, gnorm2)


Tim Dettmers's avatar
Tim Dettmers committed
243
244
def quant(x):
    max1 = torch.abs(x).max()
245
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
246
247
    return max1, x.to(torch.int8)

248

Tim Dettmers's avatar
Tim Dettmers committed
249
def dequant(c, maxC):
250
251
    return c.float() * (maxC / 127)

Tim Dettmers's avatar
Tim Dettmers committed
252
253

def mm_dequant(maxA, maxB, C):
254
255
    return C.float() * (maxA / 127) * (maxB / 127)

Tim Dettmers's avatar
Tim Dettmers committed
256
257
258

def quant_multi(x, dim):
    max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
259
260
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
261
262
    return max1, x.to(torch.int8)

263

Tim Dettmers's avatar
Tim Dettmers committed
264
def quant_multi_chunk(x, dim, chunk_size=32):
265
266
267
    if dim == 1:
        x_chunked = einops.rearrange(x, "(c a) b -> c a b", c=chunk_size)
        max1 = torch.amax(torch.abs(x_chunked), dim=dim + 1, keepdim=True)
Tim Dettmers's avatar
Tim Dettmers committed
268
269
        max1 = torch.tile(max1, (1, 1, x.shape[1]))
        max1 = max1.view(x.shape)
270
271
    elif dim == 0:
        x_chunked = einops.rearrange(x, "a (b c) -> a b c", c=chunk_size)
Tim Dettmers's avatar
Tim Dettmers committed
272
273
274
        max1 = torch.amax(torch.abs(x_chunked), dim=dim, keepdim=True)
        max1 = torch.tile(max1, (x.shape[0], 1, 1))
        max1 = max1.view(x.shape)
275
276
    max1[max1 == 0] = 1.0
    x = torch.round(x / max1 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
277
278
    return max1, x.to(torch.int8)

279

Tim Dettmers's avatar
Tim Dettmers committed
280
281
282
283
def quant_minmax(A):
    minA = A.min()
    maxA = A.max()

284

Tim Dettmers's avatar
Tim Dettmers committed
285
def mean(xx):
286
287
    return sum(xx) / float(len(xx))

Tim Dettmers's avatar
Tim Dettmers committed
288

289
290
291
292
293
# dim1 = torch.randint(1,1024*4, size=(4,)).tolist()
# dim2 = torch.randint(1,1024*4, size=(4,)).tolist()
dim1 = [1024 * 2]
dim2 = [1024 * 16]
methods = [
294
295
296
297
298
299
300
    (
        lambda x, dim: quant(x),
        lambda x, dim: quant(x),
        dequant,
        dequant,
        mm_dequant,
    )
301
]
Tim Dettmers's avatar
Tim Dettmers committed
302
methods.append((quant_multi, quant_multi, dequant, dequant, mm_dequant))
303
304
# methods.append((lambda x: quant_multi_chunk(x, dim=-1), lambda x: quant_multi_chunk(x, dim=0), dequant, dequant, mm_dequant))
method_names = ["linear", "vectorwise"]
Tim Dettmers's avatar
Tim Dettmers committed
305
batched = [False, True]
306
307
308
values = list(product(dim1, dim2, methods, batched))
values_names = list(product(dim1, dim2, method_names, batched))
names = [
309
    "dim1_{}_dim2_{}_quant_{}_batched_{}".format(*vals)
310
    for vals in values_names
311
312
313
]


314
315
316
@pytest.mark.parametrize(
    "dim1, dim2, quant_methods, batched", values, ids=names
)
Tim Dettmers's avatar
Tim Dettmers committed
317
318
319
320
321
def test_approx_igemm(dim1, dim2, quant_methods, batched):
    dim1 = dim1 - (dim1 % 32)
    dim2 = dim2 - (dim2 % 32)
    errors = []
    relerrors = []
322
    print("")
Tim Dettmers's avatar
Tim Dettmers committed
323
324
    for i in range(5):
        if batched:
325
326
            A = torch.normal(0, 0.5, size=(32, dim1, dim2 // 32), device="cuda")
            B = torch.normal(0, 0.5, size=(32, dim2 // 32, dim1), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
327
328
329
            maxA, Ac = quant_methods[0](A, 2)
            maxB, Bc = quant_methods[1](B, 1)
        else:
330
331
            A = torch.normal(0, 0.5, size=(dim1, dim2), device="cuda")
            B = torch.normal(0, 0.5, size=(dim2, dim1), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
332
333
            maxA, Ac = quant_methods[0](A, 1)
            maxB, Bc = quant_methods[1](B, 0)
334
335
336
        torch.testing.assert_allclose(
            quant_methods[2](maxA, Ac), A, atol=0.025, rtol=0.05
        )
Tim Dettmers's avatar
Tim Dettmers committed
337
338
339
340
341
342
343
344
        if batched:
            out2 = torch.bmm(A, B)
            C = torch.bmm(Ac.float(), Bc.float())
        else:
            out2 = torch.mm(A, B)
            C = F.igemm(Ac, Bc)
        out = quant_methods[4](maxA, maxB, C)
        std = out2.std()
345
346
347
348
        out /= std
        out2 /= std
        err = torch.abs(out - out2)
        relerr = err / torch.abs(out2)
Tim Dettmers's avatar
Tim Dettmers committed
349
350
351
352
353
354
        errors.append(err.mean().item())
        relerrors.append(relerr.mean().item())
    print(mean(errors))
    print(mean(relerrors))


Tim Dettmers's avatar
Tim Dettmers committed
355
356
357
358
359
def test_stable_embedding():
    layer = bnb.nn.StableEmbedding(1024, 1024)
    layer.reset_parameters()


Tim Dettmers's avatar
Tim Dettmers committed
360
n = 2
361
362
363
hidden_dim = torch.randint(32, 256, size=(n,)).tolist()
batch_dim = torch.randint(16, 256, size=(n,)).tolist()
seq_dim = torch.randint(16, 256, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
364
transpose = [(False, False), (False, True), (True, False), (True, True)]
365
366
values = list(product(hidden_dim, batch_dim, transpose, seq_dim))
names = [
367
    "hidden_dim_{}_batch_dim_{},transpose_{}_seq_dim_{}".format(*vals)
368
369
370
371
    for vals in values
]


372
373
374
@pytest.mark.parametrize(
    "hidden_dim, batch_dim, transpose, seq_dim", values, ids=names
)
Tim Dettmers's avatar
Tim Dettmers committed
375
376
377
378
379
def test_igemm(hidden_dim, batch_dim, transpose, seq_dim):
    hidden_dim = hidden_dim - (hidden_dim % 32)
    batch_dim = batch_dim - (batch_dim % 16)
    seq_dim = seq_dim - (seq_dim % 16)
    for i in range(k):
380
        shapeA = (
381
382
383
            (batch_dim, hidden_dim)
            if not transpose[0]
            else (hidden_dim, batch_dim)
384
385
386
387
388
389
390
391
        )
        shapeB = (
            (32 * random.randint(1, 4), hidden_dim)
            if transpose[1]
            else (hidden_dim, 32 * random.randint(1, 4))
        )
        A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
        B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
392
393
394
395
396
397
398
399
400
401
402
403
        if not transpose[0] and not transpose[1]:
            out2 = torch.matmul(A.float(), B.float())
            out = F.igemm(A, B)
        elif not transpose[0] and transpose[1]:
            out2 = torch.matmul(A.float(), B.t().float())
            out = F.igemm(A, B.t())
        elif transpose[0] and not transpose[1]:
            out2 = torch.matmul(A.t().float(), B.float())
            out = F.igemm(A.t(), B)
        elif transpose[0] and transpose[1]:
            out2 = torch.matmul(A.t().float(), B.t().float())
            out = F.igemm(A.t(), B.t())
Tim Dettmers's avatar
Tim Dettmers committed
404

Tim Dettmers's avatar
Tim Dettmers committed
405
        torch.testing.assert_allclose(out.float(), out2)
Tim Dettmers's avatar
Tim Dettmers committed
406

Tim Dettmers's avatar
Tim Dettmers committed
407
408
    for i in range(k):
        shapeA = (batch_dim, seq_dim, hidden_dim)
409
410
411
412
413
414
415
        shapeB = (
            (32 * random.randint(1, 4), hidden_dim)
            if transpose[1]
            else (hidden_dim, 32 * random.randint(1, 4))
        )
        A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
        B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
416
417
418
419
420
421
422
423
424
425
426
        if not transpose[0] and not transpose[1]:
            out2 = torch.matmul(A.float(), B.float())
            out = F.igemm(A, B)
        elif not transpose[0] and transpose[1]:
            out2 = torch.matmul(A.float(), B.t().float())
            out = F.igemm(A, B.t())

        torch.testing.assert_allclose(out.float(), out2)


n = 3
427
428
429
430
seq_dim = torch.randint(32, 512, size=(n,)).tolist()
hidden_dim = torch.randint(32, 1024 * 4, size=(n,)).tolist()
batch_dim = torch.randint(2, 16, size=(n,)).tolist()
values = list(product(seq_dim, hidden_dim, batch_dim))
431
names = [
432
    "seq_dim{}_hidden_dim{}_batch_dim{}".format(*vals) for vals in values
433
]
434
435


Tim Dettmers's avatar
Tim Dettmers committed
436
437
438
439
440
441
@pytest.mark.parametrize("seq_dim, hidden_dim, batch_dim", values, ids=names)
def test_dim3_igemm(seq_dim, hidden_dim, batch_dim):
    seq_dim = seq_dim - (seq_dim % 32)
    hidden_dim = hidden_dim - (hidden_dim % 32)
    batch_dim = batch_dim - (batch_dim % 2)
    for i in range(25):
442
443
444
        A = torch.randint(
            -128, 127, size=(batch_dim, seq_dim, hidden_dim), device="cuda"
        ).to(torch.int8)
445
446
447
        B = torch.randint(
            -128, 127, size=(batch_dim, seq_dim, 1024), device="cuda"
        ).to(torch.int8)
448
        out2 = torch.einsum("bsi, bso->io", A.float(), B.float())
449
450
451
        iout = torch.empty(
            A.shape[2], B.shape[2], dtype=torch.int32, device=A.device
        )
Tim Dettmers's avatar
Tim Dettmers committed
452
453
454
455
        out = F.igemm(A, B, out=iout)

        torch.testing.assert_allclose(out.float(), out2)

456

Tim Dettmers's avatar
Tim Dettmers committed
457
n = 2
458
459
460
seq_dim = torch.randint(32, 512, size=(n,)).tolist()
hidden_dim = torch.randint(32, 1024 * 4, size=(n,)).tolist()
batch_dim = torch.randint(2, 16, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
461
transpose = [False, True]
462
463
values = list(product(seq_dim, hidden_dim, batch_dim, transpose))
names = [
464
    "seq_dim={}_hidden_dim={}_batch_dim={}_transpose{}".format(*vals)
465
466
467
468
    for vals in values
]


469
470
471
@pytest.mark.parametrize(
    "seq_dim, hidden_dim, batch_dim, transpose", values, ids=names
)
Tim Dettmers's avatar
Tim Dettmers committed
472
473
474
475
def test_minmax_igemm(seq_dim, hidden_dim, batch_dim, transpose):
    def min_max(x):
        maxA = torch.amax(x, dim=2, keepdim=True)
        minA = torch.amin(x, dim=2, keepdim=True)
476
477
        scale = (maxA - minA) / 2.0
        return (127 * (x - minA - scale) / scale).to(torch.int8), minA, scale
Tim Dettmers's avatar
Tim Dettmers committed
478
479
480
481
482
483
484
485
486

    seq_dim = seq_dim - (seq_dim % 16)
    hidden_dim = hidden_dim - (hidden_dim % 16)
    batch_dim = batch_dim - (batch_dim % 2)
    errs = []
    relerrs = []
    errs2 = []
    relerrs2 = []
    for i in range(k):
487
488
489
        A = torch.normal(
            0.0, 0.5, size=(batch_dim, seq_dim, hidden_dim), device="cuda"
        )
Tim Dettmers's avatar
Tim Dettmers committed
490
        if transpose:
491
            B = torch.normal(0, 0.5, size=(256, hidden_dim), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
492
        else:
493
            B = torch.normal(0, 0.5, size=(hidden_dim, 256), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
494
495
496
497
        Ac, minA, scale = min_max(A)
        if transpose:
            maxB, Bc = quant_multi(B, dim=(1 if transpose else 0))
            out = F.igemm(Ac, Bc.t())
498
499
            out2 = torch.matmul(A, B.t())
            offset = B.t().sum(0) * (minA + scale)
Tim Dettmers's avatar
Tim Dettmers committed
500
            out = out.float()
501
            out = (out * maxB.t() * scale / (127 * 127)) + offset
Tim Dettmers's avatar
Tim Dettmers committed
502
503
504
505
506
507

            maxA, Ac = quant_multi(A, dim=2)
            out3 = F.igemm(Ac, Bc.t())
            out3 = mm_dequant(maxA, maxB.t(), out3)
        else:
            maxB, Bc = quant_multi(B, dim=0)
508
            offset = B.sum(0) * (minA + scale)
Tim Dettmers's avatar
Tim Dettmers committed
509
            out = F.igemm(Ac, Bc)
510
            out2 = torch.matmul(A, B)
Tim Dettmers's avatar
Tim Dettmers committed
511
            out = out.float()
512
            out = (out * maxB * scale / (127 * 127)) + offset
Tim Dettmers's avatar
Tim Dettmers committed
513
514
515
516
517
518
519
520
521
522

            maxA, Ac = quant_multi(A, dim=2)
            out3 = F.igemm(Ac, Bc)
            out3 = mm_dequant(maxA, maxB, out3)

        std = out2.std()
        out2 /= std
        out /= std
        out3 /= std

523
524
        err = torch.abs(out - out2)
        relerr = err / (torch.abs(out2) + 1e-7)
Tim Dettmers's avatar
Tim Dettmers committed
525

526
527
        err2 = torch.abs(out3 - out2)
        relerr2 = err2 / (torch.abs(out2) + 1e-7)
Tim Dettmers's avatar
Tim Dettmers committed
528
529
530
531
532

        errs.append(err.mean().item())
        relerrs.append(relerr.mean().item())
        errs2.append(err2.mean().item())
        relerrs2.append(relerr2.mean().item())
533
534
535
536
    # print(mean(errs))
    # print(mean(relerrs))
    # print(mean(errs2))
    # print(mean(relerrs2))
Tim Dettmers's avatar
Tim Dettmers committed
537
538
539
    assert mean(errs) < 0.015
    assert mean(relerrs) < 0.3

540

Tim Dettmers's avatar
Tim Dettmers committed
541
n = 2
542
543
544
545
dim1 = torch.randint(1, 64, size=(n,)).tolist()
dim2 = torch.randint(32, 128, size=(n,)).tolist()
dim3 = torch.randint(32, 256, size=(n,)).tolist()
dim4 = torch.randint(32, 256, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
546
transpose = [(False, False), (True, False), (False, True), (True, True)]
547
548
values = list(product(dim1, dim2, dim3, dim4, transpose))
names = [
549
    "dim1_{}_dim2_{}_dim3_{}_dim4_{}_transpose_{}".format(*vals)
550
    for vals in values
551
552
553
]


Tim Dettmers's avatar
Tim Dettmers committed
554
555
556
557
558
559
560
561
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, transpose", values, ids=names)
def test_ibmm(dim1, dim2, dim3, dim4, transpose):
    dim2 = dim2 - (dim2 % 16)
    dim3 = dim3 - (dim3 % 16)
    dim4 = dim4 - (dim4 % 16)
    for i in range(k):
        shapeA = (dim1, dim3, dim2) if transpose[0] else (dim1, dim2, dim3)
        shapeB = (dim1, dim4, dim3) if transpose[1] else (dim1, dim3, dim4)
562
563
        A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
        B = torch.randint(-128, 127, size=shapeB, device="cuda").to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
564
565
566
567
568
569
570
571
572
573
574

        if not transpose[0] and not transpose[1]:
            out2 = torch.bmm(A.float(), B.float())
            out = F.igemm(A, B)
        elif not transpose[0] and transpose[1]:
            out2 = torch.bmm(A.float(), B.permute([0, 2, 1]).float())
            out = F.igemm(A, B.permute([0, 2, 1]))
        elif transpose[0] and not transpose[1]:
            out2 = torch.bmm(A.permute([0, 2, 1]).float(), B.float())
            out = F.igemm(A.permute([0, 2, 1]), B)
        elif transpose[0] and transpose[1]:
575
576
577
            out2 = torch.bmm(
                A.permute([0, 2, 1]).float(), B.permute([0, 2, 1]).float()
            )
Tim Dettmers's avatar
Tim Dettmers committed
578
579
580
            out = F.igemm(A.permute([0, 2, 1]), B.permute([0, 2, 1]))
        torch.testing.assert_allclose(out.float(), out2.float())

581

Tim Dettmers's avatar
Tim Dettmers committed
582
n = 1
583
584
585
586
dim1 = torch.randint(1, 64, size=(n,)).tolist()
dim2 = torch.randint(32, 128, size=(n,)).tolist()
dim3 = torch.randint(32, 256, size=(n,)).tolist()
values = list(product(dim1, dim2, dim3))
587
names = ["dim1_{}_dim2_{}_dim3_{}".format(*vals) for vals in values]
588
589


Tim Dettmers's avatar
Tim Dettmers committed
590
591
592
593
594
@pytest.mark.parametrize("dim1, dim2, dim3", values, ids=names)
def test_vector_quant(dim1, dim2, dim3):
    dim2 = dim2 - (dim2 % 16)
    dim3 = dim3 - (dim3 % 16)
    for i in range(k):
595
        A = torch.randn(size=(dim2, dim3), device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
596
597
        qA, SA = F.vectorwise_quant(A, dim=0)
        A1 = F.vectorwise_dequant(qA, SA)
598
599
600
601
        n = A1.numel()
        assert_all_approx_close(A1, A, atol=0.01, rtol=0.1, count=int(n*0.002))


Tim Dettmers's avatar
Tim Dettmers committed
602
603
604


n = 2
605
606
607
608
dim1 = torch.randint(2, 256, size=(n,)).tolist()
dim2 = torch.randint(2, 256, size=(n,)).tolist()
dim3 = torch.randint(2, 256, size=(n,)).tolist()
# dim1, dim2 = (256,), (256,)
Tim Dettmers's avatar
Tim Dettmers committed
609
dtype = [torch.int8, torch.int32]
610
611
a_order = ["row"]
out_order = ["col", "row", "col32"]
Tim Dettmers's avatar
Tim Dettmers committed
612
613
transpose = [False]
dims = [2, 3]
614
values = list(product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose))
615

616
names = ["dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_transpose_{}".format(*vals)for vals in values]
617

Tim Dettmers's avatar
Tim Dettmers committed
618

619
620
@pytest.mark.parametrize("dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",values,ids=names)
def test_nvidia_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose):
621
622
623
624
    if dims == 3 and out_order != "col32":
        return
    if dtype == torch.int32 and out_order != "col32":
        return
Tim Dettmers's avatar
Tim Dettmers committed
625
626
627
    func = F.get_transform_func(dtype, orderA, orderOut, transpose)

    if dims == 2:
628
        A = torch.randint(-128, 127, size=(dim1, dim2), device="cuda").to(dtype)
Tim Dettmers's avatar
Tim Dettmers committed
629
    elif dims == 3:
630
631
632
        A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device="cuda").to(
            dtype
        )
Tim Dettmers's avatar
Tim Dettmers committed
633
634
635

    out, S = F.nvidia_transform(A, to_order=orderOut)

636
    if orderOut == "row":
Tim Dettmers's avatar
Tim Dettmers committed
637
        torch.testing.assert_allclose(A.flatten(), out.flatten())
638
    elif orderOut == "col":
Tim Dettmers's avatar
Tim Dettmers committed
639
        torch.testing.assert_allclose(A.t().flatten(), out.flatten())
640
    elif orderOut == "col32":
Tim Dettmers's avatar
Tim Dettmers committed
641
        if dims == 2:
642
            n = A.shape[0] * (A.shape[1] + (32 - (A.shape[1] % 32)))
Tim Dettmers's avatar
Tim Dettmers committed
643
        elif dims == 3:
644
645
646
647
648
            n = (
                A.shape[0]
                * A.shape[1]
                * (A.shape[2] + (32 - (A.shape[2] % 32)))
            )
Tim Dettmers's avatar
Tim Dettmers committed
649
        assert out.numel() == n
650
    elif orderOut == "col_turing":
Tim Dettmers's avatar
Tim Dettmers committed
651
        # 32 col 8 row tiles
652
653
654
        n = (A.shape[0] + (8 - A.shape[0] % 8)) * (
            A.shape[1] + (32 - (A.shape[1] % 32))
        )
Tim Dettmers's avatar
Tim Dettmers committed
655
656
657
658
        assert out.numel() == n
        total_coltile = (A.shape[1] // 32) + (1 if A.shape[1] % 32 != 0 else 0)
        for row in range(A.shape[0]):
            for col in range(A.shape[1]):
659
                i = row * A.shape[1]
Tim Dettmers's avatar
Tim Dettmers committed
660
661
662
                j = col

                coltile = (col // 32) + (1 if col % 32 != 0 else 0)
663
664
665
                rowtile = (
                    (row // 8) + (1 if row % 8 != 0 else 0)
                ) * total_coltile
666
                offset = 32 * 8 * (rowtile + coltile)
Tim Dettmers's avatar
Tim Dettmers committed
667
                col2 = col % 32
668
                row2 = (row % 8) * 32
Tim Dettmers's avatar
Tim Dettmers committed
669

670
671
672
673
                assert A.flatten()[i + j] == A[row, col]
                # assert A.flatten()[i+j] == out.flatten()[row2+col2]
                # torch.testing.assert_allclose(A.flatten()[i+j], A[row, col])
                # torch.testing.assert_allclose(A.flatten()[i+j], out.flatten()[row2+ col2+block_offset])
Tim Dettmers's avatar
Tim Dettmers committed
674

675
    if orderOut == "col32":
676
677
678
        out2, S = F.nvidia_transform(
            out, from_order=orderOut, to_order="row", state=S
        )
Tim Dettmers's avatar
Tim Dettmers committed
679
680
681
682
        torch.testing.assert_allclose(A, out2)


n = 1
683
684
685
686
dim1 = torch.randint(1, 256, size=(n,)).tolist()
dim2 = torch.randint(32, 512, size=(n,)).tolist()
dim3 = torch.randint(32, 1024, size=(n,)).tolist()
dim4 = torch.randint(32, 1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
687

688
689
690
691
# dim1 = [2]
# dim2 = [2]
# dim3 = [2]
# dim4 = [2]
Tim Dettmers's avatar
Tim Dettmers committed
692

693
dims = (2, 3)
Tim Dettmers's avatar
Tim Dettmers committed
694
ldb = [0]
695
696
697
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dim3, dim4, dims, ldb))
names = [
698
    "dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}_ldb_{}".format(*vals)
699
700
701
702
    for vals in values
]


Tim Dettmers's avatar
Tim Dettmers committed
703
704
705
706
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims, ldb", values, ids=names)
def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb):
    for i in range(k):
        if dims == 2:
707
708
709
            A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to(
                torch.int8
            )
Tim Dettmers's avatar
Tim Dettmers committed
710
        elif dims == 3:
711
712
713
714
715
716
            A = torch.randint(
                -128, 127, size=(dim1, dim2, dim3), device="cuda"
            ).to(torch.int8)
        B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to(
            torch.int8
        )
Tim Dettmers's avatar
Tim Dettmers committed
717
718
        C1 = torch.matmul(A.float(), B.t().float())

719
720
        A2, SA = F.transform(A, "col32")
        B2, SB = F.transform(B, "col_turing")
Tim Dettmers's avatar
Tim Dettmers committed
721
        C2, SC = F.igemmlt(A2, B2, SA, SB)
722
        C3, S = F.nvidia_transform(C2, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
723
724
725
        torch.testing.assert_allclose(C1, C3.float())

        # transpose
726
727
728
        B = torch.randint(-128, 127, size=(dim3, dim4), device="cuda").to(
            torch.int8
        )
Tim Dettmers's avatar
Tim Dettmers committed
729
730
        C1 = torch.matmul(A.float(), B.float())

731
        B2t, SBt = F.transform(B, "col_turing", transpose=True)
Tim Dettmers's avatar
Tim Dettmers committed
732
        C2, SC = F.igemmlt(A2, B2t, SA, SBt)
733
        C3, S = F.nvidia_transform(C2, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
734
735
        torch.testing.assert_allclose(C1, C3.float())

736

Tim Dettmers's avatar
Tim Dettmers committed
737
738
739
740
741
742
dim1 = [32]
dim2 = [32]
dim3 = [32]
dim4 = [32]

dims = (2,)
743
744
745
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dim3, dim4, dims))
names = [
746
    "dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}".format(*vals)
747
    for vals in values
748
749
750
]


Tim Dettmers's avatar
Tim Dettmers committed
751
752
753
754
755
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, dims", values, ids=names)
def test_igemmlt_half(dim1, dim2, dim3, dim4, dims):
    formatB = F.get_special_format_str()
    for i in range(k):
        if dims == 2:
756
            A = torch.normal(0, 0.5, size=(dim1, dim3), device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
757
        elif dims == 3:
758
759
760
            A = torch.normal(
                0, 0.5, size=(dim1, dim2, dim3), device="cuda"
            ).half()
761
        B = torch.randn((dim4, dim3), device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
762
763
764
765
766
767
768
769
        torch.nn.init.xavier_uniform_(B)
        C1 = torch.matmul(A, B.t())
        C2 = bnb.matmul(A, B.t())

        A = A.view(-1, A.shape[-1])

        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
        CB, CBt, statsB, statsBt, coo_tensor = F.double_quant(B)
770
        C32A, SA = F.transform(CA, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
771
772
773
774
        CxB, SB = F.transform(CB, to_order=formatB)
        out1_32, Sout1_32 = F.igemmlt(C32A, CxB, SA, SB)
        output = F.mm_dequant(out1_32, Sout1_32, statsAt, statsBt)

775
776
777
778
        # print('')
        # print(output.flatten()[:10])
        # print(C1.flatten()[:10])
        # print(C2.flatten()[:10])
Tim Dettmers's avatar
Tim Dettmers committed
779

780
        # torch.testing.assert_allclose(C1.view(-1, C1.shape[-1]), output, atol=0.025, rtol=0.05)
Tim Dettmers's avatar
Tim Dettmers committed
781
782

        # transpose
783
784
785
786
787
788
789
        # B = torch.randint(-128, 127, size=(dim3, dim4), device='cuda').to(torch.int8)
        # C1 = torch.matmul(A.float(), B.float())

        # B2t, SBt = F.transform2(B, 'col_turing', transpose=True)
        # C2, SC = F.igemmlt(A2, B2t, SA, SBt)
        # C3, S = F.transform(C2, 'row', state=SC)
        # torch.testing.assert_allclose(C1, C3.float())
Tim Dettmers's avatar
Tim Dettmers committed
790
791
792
793


batch_size = 2
seqdim = 512
794
795
796
797
798
799
800
801
802
# values = [(batch_size, seqdim, 4*1024, 16*1024),(batch_size, seqdim, 5120, 4*5120),(batch_size, seqdim, 12*1024, 4*12*1024)]
values = [
    (batch_size, seqdim, 4 * 1024, 3 * 4 * 1024),
    (batch_size, seqdim, 5120, 3 * 5120),
    (batch_size, seqdim, 12 * 1024, 4 * 12 * 1024),
]


# values = list(product(batch, seq, model, hidden))
803
names = [
804
    "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values
805
]
Tim Dettmers's avatar
Tim Dettmers committed
806
807
808
809
810


@pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names)
def test_bench_8bit_training(batch, seq, model, hidden):
    formatB = F.get_special_format_str()
811
812
813
814
815
    A = torch.randn(batch, seq, model, device="cuda").half()
    grad = torch.randn(batch, seq, model, device="cuda").half()
    w1 = torch.randint(-128, 127, size=(hidden, model), device="cuda").half()
    w2 = torch.randint(-128, 127, size=(model, hidden), device="cuda").half()
    print("")
Tim Dettmers's avatar
Tim Dettmers committed
816

817
    # torch.cuda.synchronize()
Tim Dettmers's avatar
Tim Dettmers committed
818
    ## warmup
819
    # for i in range(100):
Tim Dettmers's avatar
Tim Dettmers committed
820
    #    torch.matmul(A, w1.t())
821
    # torch.cuda.synchronize()
Tim Dettmers's avatar
Tim Dettmers committed
822
823
824
825
826
827
828
829

    dtype = torch.int8
    A = A.view(-1, A.shape[-1]).contiguous()
    grad = grad.view(-1, grad.shape[-1]).contiguous()
    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):

830
831
        out1 = torch.matmul(A, w1.t())  # fc1
        # out2 = torch.matmul(out1, w2.t())# fc2
Tim Dettmers's avatar
Tim Dettmers committed
832

833
834
        # d1 = torch.matmul(grad, w2) # delta1
        # d2 = torch.matmul(d1, w1) # delta2
Tim Dettmers's avatar
Tim Dettmers committed
835

836
837
        # grad1 = torch.einsum('bo,bh->oh', out1, grad) # grad w2
        # grad2 = torch.einsum('bh,bo->ho', A, d2) # grad w1
Tim Dettmers's avatar
Tim Dettmers committed
838
839
840
841
842

    torch.cuda.synchronize()
    t16 = time.time() - t0
    print(t16)

843
    # torch.cuda.empty_cache()
Tim Dettmers's avatar
Tim Dettmers committed
844

845
846
    # Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
    # Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2)
Tim Dettmers's avatar
Tim Dettmers committed
847

848
849
850
851
    # CTw1, Sw1 = F.transform2(Cw1, formatB)
    # CTw2, Sw2 = F.transform2(Cw2, formatB)
    # CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True)
    # CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True)
Tim Dettmers's avatar
Tim Dettmers committed
852

853
854
    # CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
    # C32A, SA = F.transform2(CA, 'col32')
Tim Dettmers's avatar
Tim Dettmers committed
855
    ## fc1
856
    # out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1, dtype=dtype)
Tim Dettmers's avatar
Tim Dettmers committed
857
858
859
    ##out1 = F.mm_dequant(out1_32, Sout1_32, statsAt, statsw1t)

    ## fc2
860
861
862
    # Cout1, Cout1t, statsout1, statsout1t, coo_tensor = F.double_quant(out1)
    # C32out1, Sout1 = F.transform2(Cout1, 'col32')
    # out2_32, Sout2_32 = F.igemmlt(C32out1, CTw2, Sout1, Sw2, dtype=dtype)
Tim Dettmers's avatar
Tim Dettmers committed
863
864
865
    ##out2 = F.mm_dequant(out2_32, Sout2_32, statsout1t, statsw2t)

    ## delta1
866
867
    # Cgrad, Cgradt, statsgrad, statsgradt, coo_tensor = F.double_quant(grad)
    # C32grad, Sgrad = F.transform2(Cgrad, 'col32')
Tim Dettmers's avatar
Tim Dettmers committed
868
869
870
871
    ##d1_32, Sd1_32 = F.igemmlt(C32grad, CTw2t, Sgrad, Sw2t, dtype=dtype)
    ##d1 = F.mm_dequant(d1_32, Sd1_32, statsgradt, statsw2)

    ## delta2
872
873
    # Cd1, Cd1t, statsd1, statsd1t, coo_tensor = F.double_quant(d1)
    # C32d1, Sd1 = F.transform2(Cd1, 'col32')
Tim Dettmers's avatar
Tim Dettmers committed
874
875
876
877
    ##d2_32, Sd2_32 = F.igemmlt(C32d1, CTw1t, Sd1, Sw1t, dtype=dtype)
    ##d2 = F.mm_dequant(d2_32, Sd2_32, statsd1t, statsw1)

    ## grad1
878
879
    # C32out1t, Sout1t = F.transform2(Cout1t, 'col32', transpose=True)
    # CTgradt, Sgradt = F.transform2(Cgradt, formatB, transpose=True)
Tim Dettmers's avatar
Tim Dettmers committed
880
881
882
883
    ##grad1_32, Sgrad1_32 = F.igemmlt(C32out1t, CTgradt, Sout1t, Sgradt, dtype=dtype)
    ##grad1 = F.mm_dequant(grad1_32, Sgrad1_32, statsout1, statsgrad)

    ## grad2
884
885
    # C32At, SAt = F.transform2(CAt, 'col32', transpose=True)
    # CTd1t, Sd1t = F.transform2(Cd1t, formatB, transpose=True)
Tim Dettmers's avatar
Tim Dettmers committed
886
887
888
    ##grad2_32, Sgrad2_32 = F.igemmlt(C32At, CTd1t, SAt, Sd1t, dtype=dtype)
    ##grad2 = F.mm_dequant(grad2_32, Sgrad2_32, statsA, statsd1)

889
    # Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2)
Tim Dettmers's avatar
Tim Dettmers committed
890

891
892
    # Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
    # Cw2, Cw2t, statsw2, statsw2t, coo_tensor = F.double_quant(w2)
Tim Dettmers's avatar
Tim Dettmers committed
893

894
895
896
897
898
899
900
    # CTw1, Sw1 = F.transform2(Cw1, formatB)
    # CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True)
    # CTw2, Sw2 = F.transform2(Cw2, formatB)
    # CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True)
    # torch.cuda.synchronize()
    # t0 = time.time()
    # for i in range(k):
Tim Dettmers's avatar
Tim Dettmers committed
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
    #    #Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
    #    #CTw1, Sw1 = F.transform2(Cw1, formatB)
    #    #Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
    #    #CTw1, Sw1 = F.transform2(Cw1, formatB)

    #    #CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A, threshold=3.5)
    #    CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
    #    #CTw1t, Sw1t = F.transform2(Cw1t, formatB, transpose=True)
    #    #CTw2, Sw2 = F.transform2(Cw2, formatB)
    #    #CTw2t, Sw2t = F.transform2(Cw2t, formatB, transpose=True)

    #    C32A, SA = F.transform2(CA, 'col32')

    #    # fc1
    #    out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1, dtype=dtype)
    #    #out1dn = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1)

    #    #print(coo_tensor.nnz)
    #    #out1sp = F.spmm_coo(coo_tensor, w1.t())
    #    #print(w1.t().shape)
    #    #out1 = out1dn + out1sp

    #    # fc2
    #    Cout1, Cout1t, statsout1, statsout1t, coo_tensor = F.double_quant(out1)
    #    C32out1, Sout1 = F.transform2(Cout1, 'col32')
    #    out2_32, Sout2_32 = F.igemmlt(C32out1, CTw2, Sout1, Sw2, dtype=dtype)
    #    #out2 = F.mm_dequant(out2_32, Sout2_32, statsout1, statsw2)

    #    # delta1
    #    Cgrad, Cgradt, statsgrad, statsgradt, coo_tensor = F.double_quant(grad)
    #    C32grad, Sgrad = F.transform2(Cgrad, 'col32')
    #    d1_32, Sd1_32 = F.igemmlt(C32grad, CTw2t, Sgrad, Sw2t, dtype=dtype)
    #    #d1 = F.mm_dequant(d1_32, Sd1_32, statsgrad, statsw2t)

    #    # delta2
    #    Cd1, Cd1t, statsd1, statsd1t, coo_tensor = F.double_quant(d1)
    #    C32d1, Sd1 = F.transform2(Cd1, 'col32')
    #    d2_32, Sd2_32 = F.igemmlt(C32d1, CTw1t, Sd1, Sw1t, dtype=dtype)
    #    #d2 = F.mm_dequant(d2_32, Sd2_32, statsd1, statsw1t)

    #    # grad1
    #    #C32out1t, Sout1t = F.transform2(Cout1t, 'col32', transpose=True)
    #    #CTgradt, Sgradt = F.transform2(Cgradt, formatB, transpose=True)
    #    #grad1_32, Sgrad1_32 = F.igemmlt(C32out1t, CTgradt, Sout1t, Sgradt, dtype=dtype)
    #    #grad1 = F.mm_dequant(grad1_32, Sgrad1_32, statsout1t, statsgradt)

    #    ## grad2
    #    #C32At, SAt = F.transform2(CAt, 'col32', transpose=True)
    #    #CTd1t, Sd1t = F.transform2(Cd1t, formatB, transpose=True)
    #    #grad2_32, Sgrad2_32 = F.igemmlt(C32At, CTd1t, SAt, Sd1t, dtype=dtype)
    #    #grad2 = F.mm_dequant(grad2_32, Sgrad2_32, statsAt, statsd1t)

953
954
955
    # torch.cuda.synchronize()
    # t8 = time.time() - t0
    # print(t8)
Tim Dettmers's avatar
Tim Dettmers committed
956
957
958


n = 2
959
960
dim1 = torch.randint(64, 256, size=(n,)).tolist()
dim4 = torch.randint(64, 1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
961

962
963
#dim1 = [2*1024]
#dim4 = [2*1024]
Tim Dettmers's avatar
Tim Dettmers committed
964

Tim Dettmers's avatar
Tim Dettmers committed
965
966
#dim1 = [4]
#dim4 = [4]
Tim Dettmers's avatar
Tim Dettmers committed
967
968

dims = (2,)
969
formatB = ["col_turing", "col_ampere"]
970
971
has_bias = [True, False]
values = list(product(dim1, dim4, dims, formatB, has_bias))
972
names = ["dim1_{}_dim4_{}_dims_{}_formatB_{}_has_bias_{}".format(*vals) for vals in values]
973
974


975
976
@pytest.mark.parametrize("dim1, dim4, dims, formatB, has_bias", values, ids=names)
def test_dequant_mm(dim1, dim4, dims, formatB, has_bias):
Tim Dettmers's avatar
Tim Dettmers committed
977
    inner = torch.randint(1, 128, size=(1,)).item()
978
979
    bias = None
    if has_bias: bias = torch.randn(dim4, device='cuda', dtype=torch.float16)
Tim Dettmers's avatar
Tim Dettmers committed
980
    formatB = F.get_special_format_str()
Tim Dettmers's avatar
Tim Dettmers committed
981
    for i in range(1):
982
983
        A = torch.randn(dim1, inner, device="cuda")
        B = torch.randn(dim4, inner, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
984
        C1 = torch.matmul(A.half(), B.t().half())
985
        if has_bias: C1 += bias
Tim Dettmers's avatar
Tim Dettmers committed
986
987
988
989

        A1, maxA = F.vectorwise_quant(A, dim=1)
        B1, maxB = F.vectorwise_quant(B, dim=1)

990
        A2, SA = F.nvidia_transform(A1, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
991
992
993
        B2, SB = F.nvidia_transform(B1, formatB)
        C2, SC = F.igemmlt(A2, B2, SA, SB)

994
        C3, S = F.nvidia_transform(C2, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
995
        C4 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t())
996
        if has_bias: C4 += bias
Tim Dettmers's avatar
Tim Dettmers committed
997

998
999
1000
1001
1002
1003
1004
        # TODO: is something wrong here? If so, the problem goes deeper
        #n = C1.numel()
        #p = 0.06
        std = C1.std(0).view(1, -1)
        C1 /= std
        C4 /= std
        #assert_all_approx_close(C1, C4, atol=0.02, rtol=0.1, count=int(n*0.06))
Tim Dettmers's avatar
Tim Dettmers committed
1005
        #assert (count / n < p), f"error in more than {p} of elements: {count}/{n}={count/n}"
Tim Dettmers's avatar
Tim Dettmers committed
1006

1007
        C5 = F.mm_dequant(C2, SC, maxA.flatten(), maxB.flatten(), bias=bias)
1008
1009
1010
        #torch.testing.assert_allclose(C5, C4, atol=0.015, rtol=0.1)
        n = C5.numel()
        assert_all_approx_close(C1, C4, atol=0.015, rtol=0.1, count=int(0.01*n))
Tim Dettmers's avatar
Tim Dettmers committed
1011
1012
1013


n = 2
1014
1015
1016
1017
dim1 = [1 * 1024]
dim2 = [1 * 1024]
# dim1 = torch.randint(1,4*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
1018
1019

dims = (2,)
1020
1021
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dims))
1022
names = ["dim1_{}_dim2_{}_dims_{}".format(*vals) for vals in values]
1023
1024


Tim Dettmers's avatar
Tim Dettmers committed
1025
1026
1027
1028
@pytest.mark.parametrize("dim1, dim2, dims", values, ids=names)
def test_colrow_absmax(dim1, dim2, dims):
    for i in range(k):
        threshold = 3.0
1029
        A = torch.randn(dim1, dim2, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        A_truncated = A.clone()
        A_truncated[torch.abs(A_truncated) >= 3.0] = 0.0
        if dims == 2:
            row_stats1, _ = torch.abs(A.float()).max(1)
            col_stats1, _ = torch.abs(A.float()).max(0)
            row_stats1_trunc, _ = torch.abs(A_truncated.float()).max(1)
            col_stats1_trunc, _ = torch.abs(A_truncated.float()).max(0)
        else:
            assert False

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
        row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(
            A, threshold=threshold
        )

        A_blocked = einops.rearrange(
            torch.abs(A),
            "(rows row_tiles) (cols block_size)-> rows cols row_tiles block_size",
            row_tiles=16,
            block_size=64 * 4,
        )
        nnz_rows1_counts = (torch.abs(A_blocked) >= threshold).sum(3).flatten()
        nnz_block_ptr1 = torch.zeros(
            nnz_rows1_counts.shape[0] + 1,
            dtype=nnz_rows1_counts.dtype,
            device=nnz_rows1_counts.device,
        )
Tim Dettmers's avatar
Tim Dettmers committed
1056
1057
1058
1059
1060
1061
        nnz_block_ptr1[1:] = nnz_rows1_counts.cumsum(0)

        torch.testing.assert_allclose(col_stats1_trunc, col_stats2)
        torch.testing.assert_allclose(row_stats1_trunc, row_stats2)
        torch.testing.assert_allclose(nnz_block_ptr1, nnz_block_ptr2)

1062
1063
1064
        row_stats2, col_stats2, nnz_block_ptr2 = F.get_colrow_absmax(
            A, threshold=0.0
        )
Tim Dettmers's avatar
Tim Dettmers committed
1065
1066
1067
1068
1069
1070
1071

        torch.testing.assert_allclose(col_stats1, col_stats2)
        torch.testing.assert_allclose(row_stats1, row_stats2)
        assert nnz_block_ptr2 is None


n = 2
1072
1073
1074
1075
1076
1077
# dim1 = [8*1024]
# dim2 = [4*1024]
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist()

values = list(product(dim1, dim2))
1078
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
1079

Tim Dettmers's avatar
Tim Dettmers committed
1080
1081
1082
1083

@pytest.mark.parametrize("dim1, dim2", values, ids=names)
def test_double_quant(dim1, dim2):
    for i in range(k):
1084
        A = torch.randn(dim1, dim2, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        out_col1, Scol = F.vectorwise_quant(A, dim=0)
        out_row1, Srow = F.vectorwise_quant(A, dim=1)

        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)

        # max difference is 1 due to rounding differences
        torch.testing.assert_allclose(CA, out_row1, atol=1, rtol=0)
        torch.testing.assert_allclose(CAt, out_col1, atol=1, rtol=0)

        n = CAt.numel()
1095
1096
1097
1098
1099
1100
        num_not_close_rows = (
            (torch.isclose(CA, out_row1, atol=1) == 0).sum().item()
        )
        num_not_close_cols = (
            (torch.isclose(CAt, out_col1, atol=1) == 0).sum().item()
        )
Tim Dettmers's avatar
Tim Dettmers committed
1101
1102

        # allow for 1:500 error due to rounding differences
1103
1104
1105
1106
1107
        min_error = 1 / 500
        if num_not_close_cols > (min_error * n):
            print(
                f"Min error exceeded {num_not_close_cols} elements are different. Error: {num_not_close_cols/n:.4f}"
            )
Tim Dettmers's avatar
Tim Dettmers committed
1108
            assert False
1109
1110
1111
1112
        if num_not_close_rows > (min_error * n):
            print(
                f"Min error exceeded {num_not_close_rows} elements are different. Error: {num_not_close_rows/n:.4f}"
            )
Tim Dettmers's avatar
Tim Dettmers committed
1113
1114
1115
1116
1117
1118
1119
            assert False

        torch.testing.assert_allclose(Srow.flatten(), statsA)
        torch.testing.assert_allclose(Scol.flatten(), statsAt)


n = 4
1120
1121
1122
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
inner = torch.randint(1, 4 * 1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
1123
1124

values = list(zip(dim1, dim4, inner))
1125
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
1126
1127


Tim Dettmers's avatar
Tim Dettmers committed
1128
1129
1130
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
def test_integrated_igemmlt(dim1, dim4, inner):
    for i in range(k):
1131
1132
        A = torch.randn(dim1, inner, device="cuda").half()
        B = torch.randn(dim4, inner, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

        out1 = torch.matmul(A.half(), B.t().half())

        C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A)
        C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B)
        A1, maxA = F.vectorwise_quant(A, dim=1)
        B1, maxB = F.vectorwise_quant(B, dim=1)

        torch.testing.assert_allclose(maxA.flatten(), stats1a)
        torch.testing.assert_allclose(maxB.flatten(), stats2a)
        torch.testing.assert_allclose(C1a, A1, rtol=0, atol=1)
        torch.testing.assert_allclose(C2a, B1, rtol=0, atol=1)

1146
1147
        A2, SA = F.nvidia_transform(C1a, "col32")
        B2, SB = F.nvidia_transform(C2a, "col_turing")
Tim Dettmers's avatar
Tim Dettmers committed
1148
1149
1150
        outC32, SC = F.igemmlt(A2, B2, SA, SB)
        out2 = F.mm_dequant(outC32, SC, stats1a, stats2a)

1151
1152
        A2, SA = F.nvidia_transform(A1, "col32")
        B2, SB = F.nvidia_transform(B1, "col_turing")
Tim Dettmers's avatar
Tim Dettmers committed
1153
1154
        C2, SC = F.igemmlt(A2, B2, SA, SB)

1155
        C3, S = F.nvidia_transform(C2, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
1156
1157
        out3 = F.vectorwise_mm_dequant(C3.float(), maxA, maxB.t())

1158
1159
        err1 = torch.abs(out1 - out2).mean().item()
        err2 = torch.abs(out1 - out3).mean().item()
1160
        assert err2 <= err1 * 1.025
Tim Dettmers's avatar
Tim Dettmers committed
1161
1162
1163


n = 6
1164
1165
1166
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
inner = torch.randint(1, 4 * 1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
1167
1168

values = list(zip(dim1, dim4, inner))
1169
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
1170
1171


Tim Dettmers's avatar
Tim Dettmers committed
1172
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
1173
@pytest.mark.skip("Row scale has some bugs for ampere")
Tim Dettmers's avatar
Tim Dettmers committed
1174
1175
1176
1177
1178
1179
def test_igemmlt_row_scale(dim1, dim4, inner):
    formatB = F.get_special_format_str()
    err1, err2, err3 = [], [], []
    relerr1, relerr2 = [], []
    scale = 1
    for i in range(k):
1180
1181
        A = torch.randn(dim1, inner, device="cuda").half()
        B = torch.randn(dim4, inner, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1182
1183
1184
1185
1186
1187
        torch.nn.init.xavier_uniform_(B)
        C1 = torch.matmul(A, B.t())

        out1 = torch.matmul(A.half(), B.t().half())

        C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A)
1188
1189
        CB, absmaxB = F.vectorwise_quant(B, quant_type="linear")
        A2, SA = F.nvidia_transform(C1a, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1190
1191
1192
        B2, SB = F.nvidia_transform(CB, formatB)
        A1, maxA = F.vectorwise_quant(A, dim=1)

1193
1194
        c = 10.0 * inner * scale
        row_scale = torch.ones_like(maxA) / c
1195
1196
1197
        outC32, SC = F.igemmlt(
            A2, B2, SA, SB, dtype=torch.int8, row_scale=row_scale
        )
1198
        C3, S = F.nvidia_transform(outC32, "row", state=SC)
Tim Dettmers's avatar
Tim Dettmers committed
1199
1200
1201
1202
        maxval = torch.abs(C3).max()
        if maxval == 127:
            scale = 1.5
        else:
1203
1204
            scale = maxval / 120
        out3 = C3 * maxA * absmaxB * c / (127 * 127)
Tim Dettmers's avatar
Tim Dettmers committed
1205
1206
1207
1208
1209
1210
1211
1212

        C4 = torch.matmul(C1a.float(), CB.float().t())

        C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B)
        B2, SB = F.nvidia_transform(C2a, formatB)
        outC32, SC = F.igemmlt(A2, B2, SA, SB)
        out2 = F.mm_dequant(outC32, SC, stats1a, stats2a)

1213
1214
        CA, SA = F.vectorwise_quant(A, dim=1, quant_type="vector")
        CB, SB = F.vectorwise_quant(B, dim=1, quant_type="linear")
Tim Dettmers's avatar
Tim Dettmers committed
1215
1216

        C = torch.matmul(CA.float(), CB.t().float())
1217
1218
        out4 = C * SA * SB / (127 * 127)
        # out4 = torch.clip(torch.round(C*SA/c), -127, 127)*c*SB/(127*127)
Tim Dettmers's avatar
Tim Dettmers committed
1219

1220
1221
1222
1223
        # print('='*80)
        # print(out1)
        # print(out2)
        # print(out3)
Tim Dettmers's avatar
Tim Dettmers committed
1224

1225
1226
1227
1228
1229
1230
        # print(out1)
        # print(out2)
        # print(out3)
        err1.append(torch.abs(out1 - out2).mean().item())
        err2.append(torch.abs(out1 - out3).mean().item())
        err3.append(torch.abs(out1 - out4).mean().item())
Tim Dettmers's avatar
Tim Dettmers committed
1231

1232
1233
1234
1235
1236
        # assert_all_approx_close(C3.float(), torch.round(C4*row_scale), rtol=0, atol=0, count=10)
    print("")
    print(sum(err1) / len(err1))
    print(sum(err2) / len(err2))
    print(sum(err3) / len(err3))
Tim Dettmers's avatar
Tim Dettmers committed
1237
1238
1239


dim1 = [1024, 2048]
1240
inner = [12288 * 4, 4096 * 4]
Tim Dettmers's avatar
Tim Dettmers committed
1241
1242
1243
dim4 = [12288, 4096]

values = list(zip(dim1, dim4, inner))
1244
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
1245
1246


Tim Dettmers's avatar
Tim Dettmers committed
1247
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
1248
@pytest.mark.skip("Row scale has some bugs for ampere")
Tim Dettmers's avatar
Tim Dettmers committed
1249
1250
1251
1252
def test_row_scale_bench(dim1, dim4, inner):
    err1, err2, err3 = [], [], []
    relerr1, relerr2 = [], []
    scale = 1
1253
1254
    A = torch.randn(dim1, inner, device="cuda").half()
    B = torch.randn(dim4, inner, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
    torch.nn.init.xavier_uniform_(B)
    # warmpup
    for i in range(k):
        C1 = torch.matmul(A, B.t())

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
        C1 = torch.matmul(A, B.t())
    torch.cuda.synchronize()
1265
    print("16", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1266
1267

    C1a, C1b, stats1a, stats1b, coo_tensor = F.double_quant(A)
1268
1269
    CB, absmaxB = F.vectorwise_quant(B, quant_type="linear")
    A2, SA = F.nvidia_transform(C1a, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1270
1271
1272
    B2, SB = F.nvidia_transform(CB, formatB)
    A1, maxA = F.vectorwise_quant(A, dim=1)

1273
1274
    c = 10.0 * inner * scale
    row_scale = maxA / c
Tim Dettmers's avatar
Tim Dettmers committed
1275
1276
1277
    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
1278
1279
1280
        outC32, SC = F.igemmlt(
            A2, B2, SA, SB, dtype=torch.int8, row_scale=row_scale
        )
Tim Dettmers's avatar
Tim Dettmers committed
1281
    torch.cuda.synchronize()
1282
    print("row-wise", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1283
1284
1285
1286
1287
1288
1289
1290

    C2a, C2b, stats2a, stats2b, coo_tensor = F.double_quant(B)
    B2, SB = F.nvidia_transform(C2a, formatB)
    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
        outC32, SC = F.igemmlt(A2, B2, SA, SB)
    torch.cuda.synchronize()
1291
    print("vector-wise", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1292
1293
1294


n = 2
1295
1296
1297
1298
dim1 = torch.randint(2, 1024, size=(n,)).tolist()
dim2 = torch.randint(2, 1024, size=(n,)).tolist()
# dim1 = [8*1024]
# dim2 = [4*1024]
Tim Dettmers's avatar
Tim Dettmers committed
1299
1300
1301

dim3 = [0]
dtype = [torch.int8]
1302
1303
a_order = ["row"]
out_order = ["col32", "col_turing", "col_ampere"]
Tim Dettmers's avatar
Tim Dettmers committed
1304
1305
transpose = [False, True]
dims = [2]
1306
1307
1308
values = list(
    product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose)
)
1309
names = [
1310
    "dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_{}".format(
1311
1312
1313
1314
1315
1316
1317
        *vals
    )
    for vals in values
]


@pytest.mark.parametrize(
1318
1319
1320
    "dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",
    values,
    ids=names,
1321
)
Tim Dettmers's avatar
Tim Dettmers committed
1322
1323
1324
def test_transform(dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose):
    for i in range(k):
        if dims == 2:
1325
1326
1327
            A = torch.randint(10, 99, size=(dim1, dim2), device="cuda").to(
                dtype
            )
Tim Dettmers's avatar
Tim Dettmers committed
1328
        elif dims == 3:
1329
1330
1331
            A = torch.randint(
                10, 99, size=(dim1, dim2, dim3), device="cuda"
            ).to(dtype)
Tim Dettmers's avatar
Tim Dettmers committed
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342

        A.view(-1)[-1] = -1
        if transpose:
            At = A.t().contiguous()
            out1, S1 = F.nvidia_transform(At, to_order=orderOut)
        else:
            out1, S1 = F.nvidia_transform(A, to_order=orderOut)
        out2, S2 = F.transform(A, to_order=orderOut, transpose=transpose)

        assert S1[0][0] == S2[0][0]
        assert S1[0][1] == S2[0][1]
1343
1344
        # print(out1)
        # print(out2)
Tim Dettmers's avatar
Tim Dettmers committed
1345
1346
1347

        torch.testing.assert_allclose(out1, out2)

1348

Tim Dettmers's avatar
Tim Dettmers committed
1349
n = 2
1350
1351
# dim1 = torch.randint(2,1024, size=(n,)).tolist()
# dim2 = torch.randint(2,1024, size=(n,)).tolist()
Tim Dettmers's avatar
Tim Dettmers committed
1352
1353
1354
1355
dim1 = [1]
dim2 = [33]

dtype = [torch.int8]
1356
1357
1358
1359
1360
# a_order = ['col_turing', 'col_ampere']
a_order = ["col_turing"]
out_order = ["row"]
values = list(product(dim1, dim2, dtype, a_order, out_order))
names = [
1361
    "dim1_{}_dim2_{}_dtype_{}_orderA_{}_orderOut_{}".format(*vals)
1362
1363
1364
1365
    for vals in values
]


Tim Dettmers's avatar
Tim Dettmers committed
1366
1367
def test_overflow():
    formatB = F.get_special_format_str()
1368
    print(formatB)
Tim Dettmers's avatar
Tim Dettmers committed
1369
    for i in range(2):
1370
1371
        a = torch.arange(5, 15).cuda().to(torch.int8).view(-1, 1)
        b = torch.arange(5, 15).cuda().to(torch.int8).view(-1, 1)
Tim Dettmers's avatar
Tim Dettmers committed
1372

1373
        Ca, Sa = F.nvidia_transform(a, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1374
1375
1376
1377
1378
1379
1380
        Cb, Sb = F.nvidia_transform(b, formatB)

        c = F.igemmlt(Ca, Cb, Sa, Sb, dtype=torch.int8)
        c2 = torch.matmul(a.float(), b.float().t())


n = 2
1381
1382
1383
1384
1385
1386
dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
# dim1 = [4]
# dim2 = [5]

values = list(product(dim1, dim2))
1387
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
1388

Tim Dettmers's avatar
Tim Dettmers committed
1389
1390
1391
1392
1393

@pytest.mark.parametrize("dim1, dim2", values, ids=names)
def test_coo_double_quant(dim1, dim2):
    threshold = 3.00
    for i in range(k):
1394
        A = torch.randn(dim1, dim2, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1395

1396
        idx = torch.abs(A) >= threshold
Tim Dettmers's avatar
Tim Dettmers committed
1397
        CA2, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
1398
1399
1400
        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(
            A, threshold=threshold
        )
Tim Dettmers's avatar
Tim Dettmers committed
1401
1402

        if coo_tensor is not None:
1403
            A1 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1404
            A2 = torch.zeros_like(A)
1405
1406
1407
            A2[
                coo_tensor.rowidx.long(), coo_tensor.colidx.long()
            ] = coo_tensor.values
Tim Dettmers's avatar
Tim Dettmers committed
1408
1409
            torch.testing.assert_allclose(A1, A2)

1410
1411
            A1 = A * (idx == 0)
            A2 = (CA.float() * statsA.unsqueeze(1) / 127).half()
1412
1413
1414
            torch.testing.assert_allclose(
                A * (idx == 0), A2, rtol=0.05, atol=1.5e-2
            )
1415

Tim Dettmers's avatar
Tim Dettmers committed
1416
1417

n = 2
1418
1419
1420
1421
dim1 = torch.randint(1, 1 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 1 * 1024, size=(n,)).tolist()
# dim1 = [7]
# dim2 = [11]
Tim Dettmers's avatar
Tim Dettmers committed
1422
transposed_B = [False, True]
1423
values = list(product(dim1, dim2, transposed_B))
1424
names = ["dim1_{}_dim2_{}_transposed_B_{}".format(*vals) for vals in values]
1425
1426


Tim Dettmers's avatar
Tim Dettmers committed
1427
1428
1429
1430
@pytest.mark.parametrize("dim1, dim2, transposed_B", values, ids=names)
def test_spmm_coo(dim1, dim2, transposed_B):
    threshold = 1.5
    dim3 = torch.randint(32, 128, size=(1,)).item()
1431
    # dim3 = 17
Tim Dettmers's avatar
Tim Dettmers committed
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
    for i in range(k):
        A = torch.randn(dim1, dim2).cuda().half()
        if transposed_B:
            B = torch.randn(dim3, dim2).cuda().half()
        else:
            B = torch.randn(dim2, dim3).cuda().half()

        idx = torch.abs(A) >= threshold
        nnz = (idx == 1).sum().item()
        rows, cols = torch.where(idx)
        values = A[idx]
1443
1444
1445
1446
        cooA = F.COOSparseTensor(
            A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
        )
        A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459

        if transposed_B:
            out2 = F.spmm_coo(cooA, B.t())
            out1 = torch.matmul(A2, B.t())
        else:
            out2 = F.spmm_coo(cooA, B)
            out1 = torch.matmul(A2, B)

        assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=30)


def test_spmm_bench():
    batch = 2
1460
1461
    model = 1024 * 1
    hidden = model * 4
Tim Dettmers's avatar
Tim Dettmers committed
1462
    seq = 1024
1463
    dim1 = batch * seq
Tim Dettmers's avatar
Tim Dettmers committed
1464
1465
1466
    dim2 = model
    dim3 = hidden
    threshold = 4
1467
1468
    A = torch.randn(dim1, dim2, device="cuda").half()
    B = torch.randn(dim2, dim3, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1469
    for i in range(10):
1470
        C1 = bnb.matmul(A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
1471
1472
1473
1474

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
1475
        C1 = bnb.matmul(A, B.t())
Tim Dettmers's avatar
Tim Dettmers committed
1476
    torch.cuda.synchronize()
1477
    t8 = time.time() - t0
Tim Dettmers's avatar
Tim Dettmers committed
1478
1479
1480

    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
1481
    print(nnz / idx.numel())
Tim Dettmers's avatar
Tim Dettmers committed
1482
1483
    rows, cols = torch.where(idx)
    values = A[idx]
1484
1485
1486
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
Tim Dettmers's avatar
Tim Dettmers committed
1487
1488

    for i in range(10):
Tim Dettmers's avatar
Tim Dettmers committed
1489
1490
1491
1492
1493
1494
1495
        out2 = F.spmm_coo(cooA, B)

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(k):
        out2 = F.spmm_coo(cooA, B)
    torch.cuda.synchronize()
1496
    tsp = time.time() - t0
Tim Dettmers's avatar
Tim Dettmers committed
1497
    print(tsp, t8)
1498
    print(tsp / t8)
Tim Dettmers's avatar
Tim Dettmers committed
1499
1500
1501


n = 2
1502
1503
1504
dim1 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
dim2 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
values = list(product(dim1, dim2))
1505
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
1506
1507


Tim Dettmers's avatar
Tim Dettmers committed
1508
1509
1510
@pytest.mark.parametrize("dim1, dim2", values, ids=names)
def test_integrated_sparse_decomp(dim1, dim2):
    threshold = 3.0
1511
    formatB = "col_turing"
Tim Dettmers's avatar
Tim Dettmers committed
1512
1513
1514
1515
1516
1517
1518
1519
1520
    for i in range(k):
        A = torch.randn(dim1, dim2).cuda().half()
        w1 = torch.randn(dim1, dim2).cuda().half()
        out1 = torch.matmul(A, w1.t())

        Cw1, Cw1t, statsw1, statsw1t, coo_tensor = F.double_quant(w1)
        CTw1, Sw1 = F.transform(Cw1, formatB)

        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(A)
1521
        C32A, SA = F.transform(CA, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1522
1523
1524
1525

        out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1)
        out2 = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1)

1526
1527
1528
        CA, CAt, statsA, statsAt, coo_tensor = F.double_quant(
            A, threshold=threshold
        )
1529
        C32A, SA = F.transform(CA, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1530
1531
1532
1533
1534
1535
1536
1537
1538

        out1_32, Sout1_32 = F.igemmlt(C32A, CTw1, SA, Sw1)
        out3 = F.mm_dequant(out1_32, Sout1_32, statsA, statsw1)

        assert coo_tensor is not None

        out4 = F.spmm_coo(coo_tensor, w1.t())
        out5 = out3 + out4

1539
1540
        err1 = torch.abs(out1 - out2).mean().item()
        err2 = torch.abs(out1 - out5).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
1541
1542
1543
1544
        assert err2 < err1


def test_matmuls():
1545
1546
1547
    a = torch.randn(256, 512).half().cuda()
    b = torch.randn(256, 512).half().cuda()
    c1 = torch.matmul(a, b.t())
Tim Dettmers's avatar
Tim Dettmers committed
1548
    c2 = bnb.matmul(a, b)
1549
    c3 = bnb.matmul_cublas(a, b.t())
Tim Dettmers's avatar
Tim Dettmers committed
1550

1551
1552
    err1 = torch.abs(c1 - c2).mean().item()
    err2 = torch.abs(c1 - c3).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
1553
1554
    assert err1 < 0.2
    assert err2 < 0.2
1555
    print(err1, err2)
Tim Dettmers's avatar
Tim Dettmers committed
1556
1557
1558


n = 2
1559
1560
1561
# dim1 = torch.randint(1,1*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
dim1 = [1 * 2048]
Tim Dettmers's avatar
Tim Dettmers committed
1562
dim2 = [12288]
1563
1564
1565
# dim1 = [32]
# dim2 = [32]
# dtype = [torch.float16, torch.int8]
Tim Dettmers's avatar
Tim Dettmers committed
1566
dtype = [torch.float16]
1567
1568
out_function = ["zeros", "ones"]
values = list(product(dim1, dim2, dtype, out_function))
1569
names = [
1570
    "dim1_{}_dim2_{}_dtype_{}_out_func_{}".format(*vals) for vals in values
1571
]
1572
1573


Tim Dettmers's avatar
Tim Dettmers committed
1574
1575
1576
1577
1578
@pytest.mark.parametrize("dim1, dim2, dtype, out_func", values, ids=names)
def test_spmm_coo_very_sparse(dim1, dim2, dtype, out_func):
    out_func = getattr(torch, out_func)

    threshold = 3.3
1579
1580
1581
    # threshold = 2.8
    # threshold = 0.0
    A = torch.randn(dim1, dim2, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1582
    if dtype == torch.float16:
1583
        B = torch.randn(dim2, dim2 * 4, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1584
1585
        torch.nn.init.xavier_uniform_(B)
    else:
1586
        B = torch.randn(dim2, dim2 * 4, device="cuda").half()
Tim Dettmers's avatar
Tim Dettmers committed
1587
        torch.nn.init.xavier_uniform_(B)
1588
1589
        B, SB = F.vectorwise_quant(B, quant_type="linear")
        # B = torch.randint(-127, 127, size=(dim2, dim2*4), device='cuda').to(torch.int8)
Tim Dettmers's avatar
Tim Dettmers committed
1590

1591
    print("")
Tim Dettmers's avatar
Tim Dettmers committed
1592
1593
1594
1595
    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
    rows, cols = torch.where(idx)
    values = A[idx]
1596
1597
1598
1599
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
    A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1600
1601
1602
1603
    out1 = torch.matmul(A2.half(), B.half())
    out = out_func(out1.shape, dtype=torch.float16, device=out1.device)
    out1 += out.clone()
    out2 = F.spmm_coo_very_sparse(cooA, B, out=out)
1604
1605
1606
1607
    # print(B)
    # print(out1)
    # print(out2)
    p = 200 / (2048 * 12288 * 4)
Tim Dettmers's avatar
Tim Dettmers committed
1608
    n = out1.numel()
1609
    count = math.ceil(p * n)
Tim Dettmers's avatar
Tim Dettmers committed
1610
1611
1612
    std = out1.std()
    out1 /= std
    out2 /= std
1613
1614
1615
    assert_all_approx_close(
        out1, out2.half(), rtol=0.01, atol=3.0e-2, count=count
    )
1616
    # assert_all_approx_close(out1, out2.half(), rtol=0.05, atol=0.01, count=count)
Tim Dettmers's avatar
Tim Dettmers committed
1617
1618
1619

    idx_col = torch.randint(0, A2.shape[-1], size=(15,))

1620
    # torch.testing.assert_allclose(out1, out2.half(), rtol=0.05, atol=0.001)
Tim Dettmers's avatar
Tim Dettmers committed
1621

1622
1623
1624
1625
1626
    # Bt = torch.randn(dim2*4, dim2, device='cuda').half()
    # torch.cuda.synchronize()
    # t0 = time.time()
    # print(A2.shape, B.shape)
    # for i in range(100):
Tim Dettmers's avatar
Tim Dettmers committed
1627
1628
1629
1630
1631
    #   #out3 = F.spmm_coo(cooA, Bt.t())
    #   #out2 = F.spmm_coo(cooA, B)
    #   #out2 = F.spmm_coo_very_sparse(cooA, B)
    #   #out1 = torch.matmul(A, Bt.t())

1632
1633
1634
    # torch.cuda.synchronize()
    # print(time.time() - t0)

Tim Dettmers's avatar
Tim Dettmers committed
1635
1636
1637
1638
1639
1640
1641
1642

def test_coo2csr():
    threshold = 1
    A = torch.randn(128, 128).half().cuda()
    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
    rows, cols = torch.where(idx)
    values = A[idx]
1643
1644
1645
1646
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
    A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1647
1648
1649
1650
    csrA = F.coo2csr(cooA)
    counts = csrA.rowptr[1:] - csrA.rowptr[:-1]
    assert counts.numel() == A.shape[0]

1651
1652
    torch.testing.assert_allclose(counts, (A2 != 0).sum(1))
    idx = A2 != 0
Tim Dettmers's avatar
Tim Dettmers committed
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
    torch.testing.assert_allclose(A2[idx], csrA.values)


def test_coo2csc():
    threshold = 1
    A = torch.randn(128, 128).half().cuda()
    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
    rows, cols = torch.where(idx)
    values = A[idx]
1663
1664
1665
1666
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
    A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1667
1668
1669
1670
    cscA = F.coo2csc(cooA)
    counts = cscA.colptr[1:] - cscA.colptr[:-1]
    assert counts.numel() == A.shape[1]

1671
    torch.testing.assert_allclose(counts, (A2 != 0).sum(0))
Tim Dettmers's avatar
Tim Dettmers committed
1672
    # torch uses row-major -> use transpose to transfer to col-major
1673
    idx = A2.t() != 0
Tim Dettmers's avatar
Tim Dettmers committed
1674
1675
1676
1677
    torch.testing.assert_allclose(A2.t()[idx], cscA.values)


n = 2
1678
1679
1680
1681
# dim1 = torch.randint(1,1*1024, size=(n,)).tolist()
# dim2 = torch.randint(1,4*1024, size=(n,)).tolist()
dim1 = [1 * 2048]
# dim2 = [12288]
Tim Dettmers's avatar
Tim Dettmers committed
1682
dim2 = [2048]
1683
1684
# dim1 = [2]
# dim2 = [2]
Tim Dettmers's avatar
Tim Dettmers committed
1685
dtype = [torch.int8]
1686
values = list(product(dim1, dim2, dtype))
1687
names = ["dim1_{}_dim2_{}_dtype_{}".format(*vals) for vals in values]
1688
1689


Tim Dettmers's avatar
Tim Dettmers committed
1690
1691
1692
@pytest.mark.parametrize("dim1, dim2, dtype", values, ids=names)
def test_spmm_coo_dequant(dim1, dim2, dtype):
    threshold = 6.0
1693
1694
1695
1696
    # threshold = 2.8
    # threshold = 0.0
    A = torch.randn(dim1, dim2, device="cuda").half()
    B = torch.empty(dim2, dim2 * 4, device="cuda", dtype=torch.float16)
Tim Dettmers's avatar
Tim Dettmers committed
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
    torch.nn.init.xavier_uniform_(B)
    Bt = B.t().contiguous()

    CB, CBt, statsB, statsBt, coo_tensor = F.double_quant(B)

    rowidx = torch.randint(0, A.shape[-1], size=(15,))

    A[:, rowidx] = 8.0

    idx = torch.abs(A) >= threshold
    nnz = (idx == 1).sum().item()
    rows, cols = torch.where(idx)
    values = A[idx]
1710
1711
1712
1713
    cooA = F.COOSparseTensor(
        A.shape[0], A.shape[1], nnz, rows.int(), cols.int(), values
    )
    A2 = A * idx
Tim Dettmers's avatar
Tim Dettmers committed
1714
1715
1716
    out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
    out1 = torch.matmul(A2, B.half())
    out3 = F.spmm_coo_very_sparse(cooA, CBt.half())
1717
    out3 = out3 * statsBt.half() / 127
Tim Dettmers's avatar
Tim Dettmers committed
1718
1719
1720
1721
1722
1723
1724
1725

    values, counts = torch.unique(cooA.rowidx, return_counts=True)
    offset = counts.cumsum(0).int()
    max_count, max_idx = torch.sort(counts, descending=True)
    print(torch.median(max_count.float()))

    torch.testing.assert_allclose(out2, out3, rtol=0.05, atol=0.001)

1726
    p = 200 / (2048 * 12288 * 4)
Tim Dettmers's avatar
Tim Dettmers committed
1727
    n = out1.numel()
1728
    count = math.ceil(p * n)
Tim Dettmers's avatar
Tim Dettmers committed
1729
1730
    assert_all_approx_close(out1, out2, rtol=0.01, atol=3.0e-2, count=count)

1731
1732
1733
    # torch.cuda.synchronize()
    # t0 = time.time()
    # for i in range(100):
Tim Dettmers's avatar
Tim Dettmers committed
1734
    #   out2 = F.spmm_coo_very_sparse(cooA, B)
1735
1736
    # torch.cuda.synchronize()
    # print('fp16', time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1737
1738
1739
1740

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
1741
        out2 = F.spmm_coo(cooA, B)
Tim Dettmers's avatar
Tim Dettmers committed
1742
    torch.cuda.synchronize()
1743
    print("cusparse fp16", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1744
1745
1746
1747

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
1748
        out2 = F.spmm_coo_very_sparse(cooA, CBt)
Tim Dettmers's avatar
Tim Dettmers committed
1749
    torch.cuda.synchronize()
1750
    print("int8", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1751
1752
1753
1754

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
1755
        out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
Tim Dettmers's avatar
Tim Dettmers committed
1756
    torch.cuda.synchronize()
1757
    print("int8+dequant", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1758
1759
1760
1761

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
1762
        out2 = torch.matmul(A, B)
Tim Dettmers's avatar
Tim Dettmers committed
1763
    torch.cuda.synchronize()
1764
    print("matmul", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1765
1766
1767
1768
1769
1770

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
        out1 = bnb.matmul(A, Bt)
        out2 = F.spmm_coo_very_sparse(cooA, CBt, dequant_stats=statsBt)
1771
        out = out1 + out2
Tim Dettmers's avatar
Tim Dettmers committed
1772
    torch.cuda.synchronize()
1773
    print("sparse+ matmul", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1774
1775
1776
1777
1778
1779
1780

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
        out1 = bnb.matmul(A, Bt)
        torch.matmul(A[:, rowidx], Bt.t()[rowidx], out=out1)
    torch.cuda.synchronize()
1781
    print("partial matmul", time.time() - t0)
Tim Dettmers's avatar
Tim Dettmers committed
1782
1783
1784
1785
1786
1787

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
        out1 = bnb.matmul(A, Bt)
    torch.cuda.synchronize()
1788
1789
    print("partial matmul", time.time() - t0)

Tim Dettmers's avatar
Tim Dettmers committed
1790
1791

batch_size = 1
1792
seqdim = 1
Tim Dettmers's avatar
Tim Dettmers committed
1793
values = []
1794
values.append((batch_size, seqdim, 768, 4 * 768))
1795
1796
1797
1798
1799
1800
# values.append((batch_size, seqdim, 1024, 4*1024))
# values.append((batch_size, seqdim, 1536, 4*1536))
# values.append((batch_size, seqdim, 2048, 4*2048))
# values.append((batch_size, seqdim, 2560, 4*2560))
# values.append((batch_size, seqdim, 4096, 4*4096))
# values.append((batch_size, seqdim, 5140, 4*5140))
1801
#values.append((batch_size, seqdim, 12288, 4*12288))
1802
names = [
1803
    "batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values
1804
]
1805
1806


Tim Dettmers's avatar
Tim Dettmers committed
1807
1808
@pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names)
def test_bench_matmul(batch, seq, model, hidden):
1809
    iters = 128
Tim Dettmers's avatar
Tim Dettmers committed
1810
1811
    formatB = F.get_special_format_str()

1812
1813
    A = torch.randn(batch, seq, model, device="cuda").half()
    B = torch.empty(hidden, model, dtype=torch.float16, device="cuda")
Tim Dettmers's avatar
Tim Dettmers committed
1814
1815
1816
1817
1818
1819
1820
1821
    torch.nn.init.xavier_uniform_(B)

    linear8bit = bnb.nn.Linear8bitLt(model, hidden, False).cuda().half()
    linear8bit.eval()

    outliers = torch.randint(0, model, size=(5,)).cuda()
    A[:, :, outliers] = 8.0

1822
1823
1824
    linearMixedBit = (
        bnb.nn.Linear8bitLt(model, hidden, False, threshold=6.0).cuda().half()
    )
Tim Dettmers's avatar
Tim Dettmers committed
1825
1826
1827
    linearMixedBit.eval()

    # warmup
1828
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1829
1830
        torch.matmul(A, B.t())
    torch.cuda.synchronize()
1831
    print("")
Tim Dettmers's avatar
Tim Dettmers committed
1832
1833
1834

    torch.cuda.synchronize()
    t0 = time.time()
1835
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1836
1837
        torch.matmul(A, B.t())
    torch.cuda.synchronize()
1838
    print(
1839
        f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
1840
    )
Tim Dettmers's avatar
Tim Dettmers committed
1841
1842
1843

    torch.cuda.synchronize()
    t0 = time.time()
1844
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1845
1846
        bnb.matmul(A, B)
    torch.cuda.synchronize()
1847
1848
1849
1850
1851
1852
1853
1854
    print(f"CB -> CxB conversion (each iteration): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(iters):
        bnb.matmul(A, B, threshold=6.0)
    torch.cuda.synchronize()
    print(f"CB -> CxB conversion + threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
Tim Dettmers's avatar
Tim Dettmers committed
1855
1856

    CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=0.0)
1857
    C32A, SA = F.transform(CA, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1858
1859
1860
1861
    CB, CBt, SCB, SCBt, coo_tensorB = F.double_quant(B)
    CxB, SB = F.transform(CB, to_order=formatB)
    torch.cuda.synchronize()
    t0 = time.time()
1862
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1863
1864
        out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
    torch.cuda.synchronize()
1865
    print(f"no overhead matmul-lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
Tim Dettmers's avatar
Tim Dettmers committed
1866
1867
1868
1869
1870

    BA, statsB = F.vectorwise_quant(B, dim=1)
    CxB, SB = F.nvidia_transform(CB, to_order=formatB)
    torch.cuda.synchronize()
    t0 = time.time()
1871
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1872
1873
        A2 = A.view(-1, A.shape[-1]).contiguous()
        CA, statsA = F.vectorwise_quant(A2, dim=1)
1874
        C32A, SA = F.nvidia_transform(CA, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1875
        out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
1876
        Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
Tim Dettmers's avatar
Tim Dettmers committed
1877
1878
        F.vectorwise_mm_dequant(Cout, statsA, statsB.t())
    torch.cuda.synchronize()
1879
    #print(f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
Tim Dettmers's avatar
Tim Dettmers committed
1880

1881
    BA, statsB = F.vectorwise_quant(B, dim=1, quant_type="linear")
Tim Dettmers's avatar
Tim Dettmers committed
1882
1883
1884
    CxB, SB = F.nvidia_transform(CB, to_order=formatB)
    torch.cuda.synchronize()
    t0 = time.time()
1885
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1886
        A2 = A.view(-1, A.shape[-1]).contiguous()
1887
1888
        CA, statsA = F.vectorwise_quant(A2, dim=1, quant_type="linear")
        C32A, SA = F.nvidia_transform(CA, "col32")
Tim Dettmers's avatar
Tim Dettmers committed
1889
        out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
1890
1891
        Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
        out = Cout * statsB * statsA * (1.0 / (127 * 127))
Tim Dettmers's avatar
Tim Dettmers committed
1892
    torch.cuda.synchronize()
1893
    #print(f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
Tim Dettmers's avatar
Tim Dettmers committed
1894
1895
1896
1897

    linear8bit(A)
    torch.cuda.synchronize()
    t0 = time.time()
1898
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1899
1900
        linear8bit(A)
    torch.cuda.synchronize()
1901
1902
1903
    print(
        f"bnb linear8bitlt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
    )
Tim Dettmers's avatar
Tim Dettmers committed
1904
1905
1906
1907

    linearMixedBit(A)
    torch.cuda.synchronize()
    t0 = time.time()
1908
    for i in range(iters):
Tim Dettmers's avatar
Tim Dettmers committed
1909
1910
        linearMixedBit(A)
    torch.cuda.synchronize()
1911
1912
1913
    print(
        f"bnb linear8bitlt with threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
    )
Tim Dettmers's avatar
Tim Dettmers committed
1914
1915
1916
1917
1918
1919

def test_zeropoint():
    def quant_zp(x):
        dtype = x.dtype
        x = x.float()
        dyna = x.max() - x.min()
1920
1921
1922
        if dyna == 0:
            dyna = 1
        qx = 254.0 / dyna
Tim Dettmers's avatar
Tim Dettmers committed
1923
        minx = x.min()
1924
1925
1926
1927
        # zpx = torch.round(minx* qx)
        # zpx = 127 - torch.round(x.max()* qx)
        zpx = torch.round(x.min() * qx) - 127
        x = (qx * x) + zpx
Tim Dettmers's avatar
Tim Dettmers committed
1928
        return x, qx, zpx
1929

Tim Dettmers's avatar
Tim Dettmers committed
1930
1931
1932
    batch = 2
    seq = 512
    model = 1024
1933
1934
1935
    hidden = 4 * model
    A = torch.randn(batch * seq, model, device="cuda").half() * 0.1
    B = torch.randn(model, hidden, device="cuda").half() * 0.1
Tim Dettmers's avatar
Tim Dettmers committed
1936
1937
1938

    C0 = torch.matmul(A, B)

1939
1940
    # A, SA = F.vectorwise_quant(A, quant_type='linear')
    # B, SB = F.vectorwise_quant(B, quant_type='linear')
Tim Dettmers's avatar
Tim Dettmers committed
1941
1942
1943
1944
1945
1946
1947
    A = A.float()
    B = B.float()

    C1 = torch.matmul(A, B)
    C3 = bnb.matmul(A.half(), B.t().contiguous().half())

    zp = 1
1948
1949
1950
1951
    # C2 = torch.matmul(A-zp, B)
    # C2 += B.sum(0).view(1, -1)*zp
    C2 = torch.matmul(A, B - zp)
    C2 -= A.sum(1).view(-1, 1) * zp
Tim Dettmers's avatar
Tim Dettmers committed
1952
1953
1954

    ca, cqa, cza = quant_zp(A)
    print(ca.min(), ca.max())
1955
    print((ca - cza).min(), (ca - cza).max())
Tim Dettmers's avatar
Tim Dettmers committed
1956
1957
1958

    zp = 1
    scale = 2.0
1959
1960
    C5 = torch.matmul((A * scale) - zp, B)
    C5 += B.sum(0) * zp
Tim Dettmers's avatar
Tim Dettmers committed
1961
1962
1963
1964
    C5 /= scale

    CA, qa, zpa = quant_zp(A)
    C4 = torch.matmul(CA, B)
1965
    C4 -= B.sum(0) * zpa
Tim Dettmers's avatar
Tim Dettmers committed
1966
    C4 /= qa
Tim Dettmers's avatar
Tim Dettmers committed
1967

Tim Dettmers's avatar
Tim Dettmers committed
1968
1969
1970
1971
    zpb = 1
    zpa = 1
    qa = 2
    qb = 2
1972
1973
1974
1975
    C6 = torch.matmul((A * qa) + zpa, (B * qb) + zpb)
    C6 -= (qb * B.sum(0).view(1, -1) * zpa) + (qa * A.sum(1).view(-1, 1) * zpb)
    C6 -= zpa * zpb * A.shape[1]
    C6 /= qa * qb
Tim Dettmers's avatar
Tim Dettmers committed
1976

Tim Dettmers's avatar
Tim Dettmers committed
1977
1978
1979
    CA, qa, zpa = quant_zp(A)
    CB, qb, zpb = quant_zp(B)
    C7 = torch.matmul(CA, CB)
1980
1981
1982
    C7 -= (qb * B.sum(0).view(1, -1) * zpa) + (qa * A.sum(1).view(-1, 1) * zpb)
    C7 -= zpa * zpb * A.shape[1]
    C7 /= qa * qb
Tim Dettmers's avatar
Tim Dettmers committed
1983

1984
1985
    print("")
    # print(C0.flatten()[:10])
Tim Dettmers's avatar
Tim Dettmers committed
1986
1987
1988
1989
1990
1991
    print(C1.flatten()[:10])
    print(C2.flatten()[:10])
    print(C3.flatten()[:10])
    print(C5.flatten()[:10])
    print(C6.flatten()[:10])
    print(C7.flatten()[:10])
1992
1993
1994
1995
1996
1997
    err1 = torch.abs(C1 - C2).mean().item()
    err2 = torch.abs(C1 - C3).mean().item()
    err3 = torch.abs(C1 - C4).mean().item()
    err4 = torch.abs(C1 - C5).mean().item()
    err5 = torch.abs(C1 - C6).mean().item()
    err6 = torch.abs(C1 - C7).mean().item()
Tim Dettmers's avatar
Tim Dettmers committed
1998
    print(err1, err2, err3, err4, err5, err6)
Tim Dettmers's avatar
Tim Dettmers committed
1999
2000


2001
def test_extract_outliers():
2002
    for i in range(k):
2003
        shapeA = (4096, 4096 * 4)
2004
        idx = torch.unique(torch.randint(0, shapeA[1], size=(10,)).int()).cuda()
2005
2006
        # idx = torch.Tensor([0]).int().cuda()
        A = torch.randint(-128, 127, size=shapeA, device="cuda").to(torch.int8)
2007
        outliers1 = A[:, idx.long()]
2008

2009
        CA, SA = F.transform(A, "col_turing")
2010

2011
        outliers2 = F.extract_outliers(CA, SA, idx)
2012

2013
2014
        assert outliers2.shape[0] == shapeA[0]
        assert outliers2.shape[1] == idx.numel()
2015

2016
2017
        torch.testing.assert_allclose(outliers1, outliers2)

2018
        CA, SA = F.transform(A, "col_ampere")
2019
2020
2021
2022
2023

        outliers2 = F.extract_outliers(CA, SA, idx)

        assert outliers2.shape[0] == shapeA[0]
        assert outliers2.shape[1] == idx.numel()
2024

2025
        torch.testing.assert_allclose(outliers1, outliers2)
2026
2027
2028
2029
2030
2031
2032
2033



def test_blockwise_cpu_large():
    diffs = []
    reldiffs = []
    batch = 128
    seq = 128
2034
    for hidden in [128]:#, 14336]:
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
        for blocksize in [4096, 16384]:
            for i in range(2):
                A1 = torch.randn(batch, seq, hidden, device='cpu')
                t0 = time.time()
                C, S = F.quantize_blockwise(A1, blocksize=blocksize)
                A2 = F.dequantize_blockwise(C, S, blocksize=blocksize)
                print(time.time() - t0)
                diff = torch.abs(A1 - A2)
                reldiff = diff / torch.abs(A1 + 1e-8)
                diffs.append(diff.mean().item())
                reldiffs.append(reldiff.mean().item())
                assert diffs[-1] < 0.011
            # print(sum(diffs)/len(diffs))
            # print(sum(reldiffs)/len(reldiffs))
Tim Dettmers's avatar
Tim Dettmers committed
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068



def test_fp8_quant():
    for e_bits in range(1, 7):
        p_bits = 7-e_bits
        code = F.create_fp8_map(True, e_bits, p_bits).cuda()

        print(e_bits, p_bits)
        abserr = []
        relerr = []
        for i in range(100):
            A1 = torch.randn(1024, 1024, device="cuda")
            C, SC = F.quantize_blockwise(A1, code=code)
            A2 = F.dequantize_blockwise(C, SC)
            diff = torch.abs(A1 - A2)
            reldiff = diff/torch.abs(A1+1e-8)
            abserr.append(diff.mean().item())
            relerr.append(reldiff.mean().item())
            #assert diff < 0.0075
2069
2070
        #print(sum(abserr)/len(abserr))
        #print(sum(relerr)/len(relerr))
Tim Dettmers's avatar
Tim Dettmers committed
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082

        abserr = []
        relerr = []
        for i in range(100):
            A1 = torch.rand(1024, 1024, device="cuda")
            C, SC = F.quantize_blockwise(A1, code=code)
            A2 = F.dequantize_blockwise(C, SC)
            diff = torch.abs(A1 - A2)
            reldiff = diff/torch.abs(A1+1e-8)
            abserr.append(diff.mean().item())
            relerr.append(reldiff.mean().item())
            #assert diff < 0.0075
2083
2084
        #print(sum(abserr)/len(abserr))
        #print(sum(relerr)/len(relerr))
Tim Dettmers's avatar
Tim Dettmers committed
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096

        abserr = []
        relerr = []
        for i in range(100):
            A1 = torch.randn(1024, 1024, device="cuda")
            C, SC = F.quantize_blockwise(A1)
            A2 = F.dequantize_blockwise(C, SC)
            diff = torch.abs(A1 - A2)
            reldiff = diff/torch.abs(A1+1e-8)
            abserr.append(diff.mean().item())
            relerr.append(reldiff.mean().item())
            #assert diff < 0.0075
2097
2098
        #print(3, sum(abserr)/len(abserr))
        #print(3, sum(relerr)/len(relerr))
Tim Dettmers's avatar
Tim Dettmers committed
2099

2100
2101
2102

def test_few_bit_quant():

2103
    #print('')
2104
    for bits in range(2, 9):
2105
        #print('='*30, bits, '='*30)
Tim Dettmers's avatar
Tim Dettmers committed
2106
2107
2108
        for method in ['linear', 'fp8', 'dynamic', 'quantile']:
            abserrs = []
            relerrs = []
Tim Dettmers's avatar
Tim Dettmers committed
2109
2110
            code = None
            if method == 'linear':
2111
                code = F.create_linear_map(True, total_bits=bits).cuda()
Tim Dettmers's avatar
Tim Dettmers committed
2112
2113
2114
2115
            elif method == 'fp8':
                ebits = math.ceil(bits/2)
                pbits = bits-ebits-1
                code = F.create_fp8_map(True, ebits, pbits, bits).cuda()
2116
                print(code)
Tim Dettmers's avatar
Tim Dettmers committed
2117
2118
2119
2120
            elif method == 'dynamic':
                code = F.create_dynamic_map(True, bits-0, bits).cuda()
            elif method == 'quantile':
                values = torch.randn(2048, 2048, device='cuda')
Tim Dettmers's avatar
Tim Dettmers committed
2121
2122
2123
2124
2125
                code = F.create_quantile_map(values, bits).cuda()
            # for some data types we have no zero
            # for some data types we have one zero
            # for some data types we have two zeros
            assert torch.unique(code).numel() in [2**bits, 2**bits-1], f'bits: {bits}, method: {method}'
2126
            #print(method, (code==0).sum())
Tim Dettmers's avatar
Tim Dettmers committed
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
            assert code.numel() == 256
            for i in range(10):

                values = torch.randn(1, 32, device='cuda')
                values /= values.abs().max()
                #values[values.abs() < 1e-6] += 1e-5

                q1 = []
                v1 = []
                for v in values[0]:
                    idx = torch.abs(v-code).argmin()
                    q1.append(idx.item())
                    v1.append(code[idx].item())

                q1 = torch.Tensor(q1).cuda()
                v1 = torch.Tensor(v1).cuda()

Tim Dettmers's avatar
Tim Dettmers committed
2144
2145
                q2, S2 = F.quantize_blockwise(values, code=code)
                v2 = F.dequantize_blockwise(q2, S2)
Tim Dettmers's avatar
Tim Dettmers committed
2146
2147

                idx = torch.isclose(q1.int(), q2.int())
Tim Dettmers's avatar
Tim Dettmers committed
2148
2149
2150
                err2 = torch.abs(v2-values)
                abserrs.append(err2.mean().item())
                relerrs.append((err2/(1e-10+values).abs()).mean().item())
Tim Dettmers's avatar
Tim Dettmers committed
2151
2152
2153
                if idx.sum():
                    # some weird cases
                    err1 = torch.abs(v1-values).mean()
Tim Dettmers's avatar
Tim Dettmers committed
2154
                    #assert err2.mean() <= err1
Tim Dettmers's avatar
Tim Dettmers committed
2155
2156
2157

                else:
                    torch.testing.assert_allclose(q1, q2)
2158
            #print(method, 'abserr:', sum(abserrs)/len(abserrs), 'relerr:', sum(relerrs)/len(relerrs))
Tim Dettmers's avatar
Tim Dettmers committed
2159
    #assert False
Tim Dettmers's avatar
Tim Dettmers committed
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169


def test_kbit_quantile_estimation():
    for i in range(100):
        data = torch.randn(1024, 1024, device='cuda')
        for bits in range(2, 9):
            p = np.linspace(1.3e-4, 1-1.3e-4, 2**bits)
            val1 = torch.Tensor(norm.ppf(p)).cuda()
            val2 = F.estimate_quantiles(data, offset=0, num_quantiles=2**bits)
            err = torch.abs(val1-val2).mean()
Tim Dettmers's avatar
Tim Dettmers committed
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
            assert err < 0.038

    for i in range(100):
        data = torch.randn(1024, 1024, device='cuda')
        for bits in range(2, 4):
            total_values = 2**bits-1
            p = np.linspace(0, 1, 2*total_values+1)
            idx = np.arange(1, 2*total_values+1, 2)
            p = p[idx]
            offset = 1/(2*total_values)
            p = np.linspace(offset, 1-offset, total_values)
            val1 = torch.Tensor(norm.ppf(p)).cuda()
            val2 = F.estimate_quantiles(data, num_quantiles=2**bits-1)
            err = torch.abs(val1-val2).mean()
Tim Dettmers's avatar
Tim Dettmers committed
2184
            assert err < 0.035
2185
2186
2187
2188


def test_bench_dequantization():
    a = torch.rand(1024, 1024, device='cuda').half()
2189
2190
2191
    code =F.create_fp8_map(True, 3, 0, 4).cuda()
    qa, SA = F.quantize_blockwise(a, code=code)
    print(qa.max())
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202

    max_theoretical_mu =  1024*1024*2/1024**3/672*1000*1000
    #print(max_theoretical_mu)

    torch.cuda.synchronize()
    t0 = time.time()
    for i in range(100):
        F.dequantize_blockwise(qa, SA, blocksize=2048)
    torch.cuda.synchronize()
    #print((time.time()-t0)/1e6)

2203