xpu_kernels.cpp 10.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#include "xpu_kernels.h"
#include <bit>
#include <cmath>
#include <iostream>

#include <sycl/sycl.hpp>

inline float dDequantizeFP4(unsigned char val) {
    if ((val & 0b1000) == 8)
        if ((val & 0b0100) == 4)
            if ((val & 0b0010) == 2)
                if ((val & 0b0001) == 1)
                    return -0.25000000f;
                else
                    return -0.16666667f;
            else if ((val & 0b0001) == 1)
                return -0.50000000f;
            else
                return -0.33333333f;
        else if ((val & 0b0010) == 2)
            if ((val & 0b0001) == 1)
                return -1.00000000f;
            else
                return -0.66666667f;
        else if ((val & 0b0001) == 1)
            return -5.208333333e-03f;
        else
            return 0.00000000f;
    else if ((val & 0b0100) == 4)
        if ((val & 0b0010) == 2)
            if ((val & 0b0001) == 1)
                return 0.25000000f;
            else
                return 0.16666667f;
        else if ((val & 0b0001) == 1)
            return 0.50000000f;
        else
            return 0.33333333f;
    else if ((val & 0b0010) == 2)
        if ((val & 0b0001) == 1)
            return 1.00000000f;
        else
            return 0.66666667f;
    else if ((val & 0b0001) == 1)
        return 5.208333333e-03f;
    else
        return 0.00000000f;
}

inline float dDequantizeNF4(unsigned char val) {

    // the values for this tree was generated by test_normal_map_tree
    // in the file tests/test_functional.py
    if ((val & 0b1000) == 8)
        if ((val & 0b0100) == 4)         // 1
            if ((val & 0b0010) == 2)     // 11
                if ((val & 0b0001) == 1) // 111
                    return 1.0f;         //*1111
                else
                    return 0.7229568362236023f; //*1110
            else if ((val & 0b0001) == 1)       // 110
                return 0.5626170039176941f;     //*1101
            else
                return 0.44070982933044434f; //*1100
        else if ((val & 0b0010) == 2)        // 10
            if ((val & 0b0001) == 1)         // 101
                return 0.33791524171829224f; //*1011
            else
                return 0.24611230194568634f; //*1010
        else if ((val & 0b0001) == 1)        // 100
            return 0.16093020141124725f;     //*1001
        else
            return 0.07958029955625534f; //*1000

    else if ((val & 0b0100) == 4)    // 0
        if ((val & 0b0010) == 2)     // 01
            if ((val & 0b0001) == 1) // 011
                return 0.0f;         //*0111
            else
                return -0.09105003625154495f; //*0110
        else if ((val & 0b0001) == 1)         // 010
            return -0.18477343022823334f;     //*0101
        else
            return -0.28444138169288635f; //*0100
    else if ((val & 0b0010) == 2)         // 00
        if ((val & 0b0001) == 1)          // 001
            return -0.39491748809814453f; //*0011
        else
            return -0.5250730514526367f; //*0010
    else if ((val & 0b0001) == 1)        // 000
        return -0.6961928009986877f;     //*0001
    else
        return -1.0f; //*0000
}

template <typename T, int TILE_SIZE, int NUM_PER_TH, int DATA_TYPE>
SYCL_EXTERNAL void kDequantizeBlockwise<T, TILE_SIZE, NUM_PER_TH, DATA_TYPE>::operator()(sycl::nd_item<1> item) const {
    const int base_idx = item.get_group(0) * TILE_SIZE;
    size_t local_idx = item.get_local_id(0) * NUM_PER_TH;
    float local_abs_max = -FLT_MAX;
    int local_load_idx = 0;
    int local_store_idx = 0;

    uint8_t qvals[NUM_PER_TH];
    T vals[NUM_PER_TH * ((DATA_TYPE > 0) ? 2 : 1)];

    if (DATA_TYPE > 0) {
        local_load_idx = sycl::min(TILE_SIZE, (n + 1) / 2 - base_idx);
        local_store_idx = sycl::min(TILE_SIZE * 2, n - base_idx * 2);
    } else {
        local_load_idx = sycl::min(TILE_SIZE, n - base_idx);
        local_store_idx = local_load_idx;
    }

    // Avoid expensive division by the blocksize (as blocksize will always be a
    // power-of-2)
    local_abs_max = absmax[(base_idx + local_idx) >> (31 - std::countl_zero<unsigned int>(blocksize))];

    if (local_idx + NUM_PER_TH < local_load_idx) {
        reinterpret_cast<sycl::vec<uint8_t, NUM_PER_TH>(&)[NUM_PER_TH]>(qvals)[0] =
            reinterpret_cast<sycl::vec<uint8_t, NUM_PER_TH>*>(A)[(base_idx + local_idx) / NUM_PER_TH];
    } else {
#pragma unroll NUM_PER_TH
        for (int i = 0; i < NUM_PER_TH; i++) {
            if (local_idx + i < local_load_idx) {
                qvals[i] = A[base_idx + local_idx + i];
            } else {
                qvals[i] = (uint8_t)0;
            }
        }
    }

    switch (DATA_TYPE) {
    case General8bit:
#pragma unroll NUM_PER_TH
        for (int j = 0; j < NUM_PER_TH; j++)
            vals[j] = code[qvals[j]] * local_abs_max;
        break;
    case FP4:
#pragma unroll NUM_PER_TH
        for (int j = 0; j < NUM_PER_TH; j++) {
            vals[j * 2] = dDequantizeFP4(qvals[j] >> 4) * local_abs_max;
            vals[j * 2 + 1] = dDequantizeFP4(qvals[j] & 0x0F) * local_abs_max;
        }
        break;
    case NF4:
#pragma unroll NUM_PER_TH
        for (int j = 0; j < NUM_PER_TH; j++) {
            vals[j * 2] = dDequantizeNF4(qvals[j] >> 4) * local_abs_max;
            vals[j * 2 + 1] = dDequantizeNF4(qvals[j] & 0x0F) * local_abs_max;
        }
        break;
    }

    const int local_dst_size = (DATA_TYPE > 0) ? NUM_PER_TH * 2 : NUM_PER_TH;
    int local_dst_idx = (DATA_TYPE > 0) ? local_idx * 2 : local_idx;

    if (local_dst_idx + local_dst_size < local_store_idx) {
        reinterpret_cast<sycl::vec<T, local_dst_size>*>(
            out
        )[(((DATA_TYPE > 0) ? base_idx * 2 : base_idx) + local_dst_idx) / local_dst_size] =
            reinterpret_cast<sycl::vec<T, local_dst_size>(&)[local_dst_size]>(vals)[0];
    } else {
#pragma unroll NUM_PER_TH
        for (int i = 0; i < local_dst_size; i++) {
            if (local_dst_idx + i < local_store_idx) {
                out[((DATA_TYPE > 0) ? base_idx * 2 : base_idx) + local_dst_idx + i] = vals[i];
            }
        }
    }
}

template <typename T, size_t GROUP_SIZE, size_t NUM_PER_THREAD, size_t SUBG_SIZE, int BITS>
SYCL_EXTERNAL void
    kgemv_4bit_inference<T, GROUP_SIZE, NUM_PER_THREAD, SUBG_SIZE, BITS>::operator()(sycl::nd_item<1> item) const {
    size_t idx = item.get_local_id();
    const int sg_idx = idx / SUBG_SIZE;
    const int sg_lane = idx % SUBG_SIZE;
    const int num_values_4bit = SUBG_SIZE;
    const int row_B = NUM_PER_THREAD * item.get_group().get_group_id() + sg_idx;
    const int offset_B = ldb * row_B;
    const int num_values_8bit = num_values_4bit / 2;
    float local_C = 0.0f;

    unsigned char local_B_4bit[num_values_8bit];
    T local_B[num_values_4bit / 4];
    T local_A[num_values_4bit / 4];
    T local_absmax = T(0.0f);

    if (idx < 16) {
        quant_map[idx] = T(datatype[idx]);
    }

    item.barrier(sycl::access::fence_space::local_space);

    for (int inner_idx = sg_lane * num_values_4bit; inner_idx < K; inner_idx += SUBG_SIZE * num_values_4bit) {
        const int inner_idx_halved = inner_idx / 2;

        // Avoid expensive division by the blocksize (as blocksize will always be a
        // power-of-2)
        const int absidx = ((2 * offset_B) + inner_idx) >> (31 - std::countl_zero((unsigned int)blocksize));
        local_absmax = absmax[absidx];

        if (row_B < N) {
            if ((inner_idx_halved + num_values_8bit) < (K / 2)) {
                reinterpret_cast<sycl::vec<int, 4>(&)[num_values_8bit]>(local_B_4bit)[0] =
                    reinterpret_cast<sycl::vec<int, 4>*>(B)[(offset_B + (inner_idx_halved)) / (num_values_8bit)];
            } else {
#pragma unroll
                for (int j = 0; j < (num_values_8bit); j++)
                    if ((inner_idx_halved) + j < (K / 2))
                        local_B_4bit[j] = B[offset_B + inner_idx_halved + j];
                    else
                        local_B_4bit[j] = 0b01110111;
            }
        } else {
#pragma unroll
            for (int j = 0; j < (num_values_8bit); j++)
                local_B_4bit[j] = 0b01110111;
        }

        for (int i = 0; i < 4; i++) {
#pragma unroll
            for (int k = 0; k < num_values_8bit / 4; k++) {
                local_B[k * 2] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] >> 4] * local_absmax;
                local_B[k * 2 + 1] = quant_map[local_B_4bit[(i * num_values_8bit / 4) + k] & 0x0F] * local_absmax;
            }

            if (inner_idx + (num_values_4bit / 4) + (i * num_values_4bit / 4) < K) {
                if (BITS == 16) {
                    reinterpret_cast<sycl::vec<int, 4>(&)[num_values_4bit / 4]>(local_A)[0] =
                        reinterpret_cast<sycl::vec<int, 4>*>(A)[inner_idx / (num_values_4bit / 4) + i];
                } else {
                    reinterpret_cast<sycl::vec<int, 4>(&)[num_values_4bit / 4]>(local_A)[0] =
                        reinterpret_cast<sycl::vec<int, 4>*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 0];
                    reinterpret_cast<sycl::vec<int, 4>(&)[num_values_4bit / 4]>(local_A)[1] =
                        reinterpret_cast<sycl::vec<int, 4>*>(A)[inner_idx / (num_values_4bit / 8) + (2 * i) + 1];
                }

            } else {
#pragma unroll
                for (int k = 0; k < num_values_4bit / 4; k++)
                    if (inner_idx + (i * num_values_4bit / 4) + k < K)
                        local_A[k] = A[inner_idx + k + (i * num_values_4bit / 4)];
                    else
                        local_A[k] = T(0.0f);
            }

// accumulate in float for accuracy;
#pragma unroll
            for (int k = 0; k < num_values_4bit / 4; k++) {
                local_C += (float)(local_A[k] * local_B[k]);
            }
        }
    }

    local_C = sycl::reduce_over_group(item.get_sub_group(), local_C, sycl::plus<>());

    if (row_B < N && sg_lane == 0)
        out[row_B] = T(local_C);
}

//==============================================================
//                   TEMPLATE DEFINITIONS
//==============================================================

template class kDequantizeBlockwise<sycl::half, 512, 4, FP4>;
template class kDequantizeBlockwise<sycl::half, 512, 4, General8bit>;
template class kDequantizeBlockwise<sycl::half, 512, 4, NF4>;

template class kDequantizeBlockwise<float, 512, 4, FP4>;
template class kDequantizeBlockwise<float, 512, 4, General8bit>;
template class kDequantizeBlockwise<float, 512, 4, NF4>;

template class kDequantizeBlockwise<sycl::ext::oneapi::bfloat16, 512, 4, FP4>;
template class kDequantizeBlockwise<sycl::ext::oneapi::bfloat16, 512, 4, General8bit>;
template class kDequantizeBlockwise<sycl::ext::oneapi::bfloat16, 512, 4, NF4>;

template class kgemv_4bit_inference<sycl::half, 128, 4, 32, 16>;
template class kgemv_4bit_inference<sycl::ext::oneapi::bfloat16, 128, 4, 32, 16>;
template class kgemv_4bit_inference<float, 128, 4, 32, 32>;