test_hpu_linear.py 7.85 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import numpy as np
import math
import torch
import pytest
try:
    import habana_frameworks.torch.core as htcore
except Exception as e:
    pytestmark = pytest.mark.skip("Couldn't import HPU plugin, skipping HPU tests")

def _convert_to_tensor_list(tensor_or_tensors):
    if isinstance(tensor_or_tensors, tuple):
        return list(tensor_or_tensors)
    elif isinstance(tensor_or_tensors, list):
        return tensor_or_tensors
    elif isinstance(tensor_or_tensors, torch.Tensor):
        # You can't return list(tensor_or_tensors), because it will fail on 0-d tensors
        result_list = []
        result_list.append(tensor_or_tensors)
        return result_list
    else:
        raise TypeError("Can not convert outputs")

def compare_tensors(hpu_tensors, cpu_tensors, atol, rtol, assert_enable=True):
    hpu_tensors = _convert_to_tensor_list(hpu_tensors)
    cpu_tensors = _convert_to_tensor_list(cpu_tensors)
    assert len(hpu_tensors) == len(cpu_tensors)

    hpu_tensors = [tensor.to('cpu') if tensor is not None else tensor for tensor in hpu_tensors]

    for i in range(len(hpu_tensors)):
        if cpu_tensors[i] is None and hpu_tensors[i] is None:
            continue

        hpu_tensors[i] = (
            hpu_tensors[i].float()
            if hpu_tensors[i].dtype in [torch.bfloat16, torch.float8_e5m2, torch.float8_e4m3fn]
            else hpu_tensors[i]
        )
        cpu_tensors[i] = (
            cpu_tensors[i].float()
            if cpu_tensors[i].dtype in [torch.bfloat16, torch.float8_e5m2, torch.float8_e4m3fn]
            else cpu_tensors[i]
        )
        if assert_enable:
            np.testing.assert_allclose(
                hpu_tensors[i].detach().numpy(),
                cpu_tensors[i].detach().numpy(),
                atol=atol,
                rtol=rtol,
            )
        else:
            print("hpu_result[{}]".format(i), hpu_tensors[i].detach().numpy())
            print("cpu_result[{}]".format(i), cpu_tensors[i].detach().numpy())
            return np.allclose(
                hpu_tensors[i].detach().numpy(),
                cpu_tensors[i].detach().numpy(),
                atol=atol,
                rtol=rtol,
                equal_nan=True,
            )

# taken from AutoGPTQ/tests/test_repacking.py
def gen_quant4(k, n, groupsize=-1, bias=False):
    maxq = 2 ** 4 - 1
    w = torch.randn((k, n), dtype=torch.bfloat16, device="cpu")

    original_w = w.clone()

    if groupsize != -1:
        w = w.reshape((-1, groupsize, n))
        w = w.permute(1, 0, 2)
        w = w.reshape((groupsize, -1))

    s = torch.max(torch.abs(w), 0, keepdim=True)[0]
    s *= 2 / maxq

    # Quantize.
    w = torch.round(w / s).int()

    # Unsigned storage.
    w += (maxq + 1) // 2
    w = torch.clamp(w, 0, maxq)

    # Dequantize.
    ref = (w - (maxq + 1) // 2).bfloat16() * s

    if groupsize != -1:
        def reshape(w):
            w = w.reshape((groupsize, -1, n))
            w = w.permute(1, 0, 2)
            w = w.reshape((k, n)).contiguous()
            return w
        ref = reshape(ref)
        w = reshape(w)

    s = s.reshape((-1, n)).contiguous()
    linear = torch.nn.Linear(k, n, bias=bias)
    linear.weight.data = ref.t()

    return original_w, linear, s

@pytest.mark.parametrize("bits", [4])
@pytest.mark.parametrize("group_size", [16, 32, 128])
@pytest.mark.parametrize("infeatures", [64, 128, 512, 4096, 11008])
@pytest.mark.parametrize("outfeatures", [64, 128, 512, 4096, 11008])
@pytest.mark.parametrize("bias", [True, False], ids=["bias", "no_bias"])
@pytest.mark.parametrize("scales_value, weight_value, zeros_value", [("normal", "normal", "normal"), ("normal", "normal", "range"), ("normal", "normal", "zeros"), ("ones", "zeros", "zeros"), ("ones", "zeros", "eights"), ("ones", "range", "zeros"), ("ones", "range", "ones"), ("ones", "7", "ones"), ("ones", "zeros", "range"),("ones", "zeros", "ones"), ("ones", "range", "range"), ("range", "range", "range"), ("range", "range", "zeros")])
@pytest.mark.parametrize("weight_dtype", [torch.bfloat16, torch.float32], ids=["bf16", "fp32"])
def test_qlinear_hpu(bits, group_size, infeatures, outfeatures, bias, scales_value, weight_value, zeros_value, weight_dtype):
    qweight_shape_0 = infeatures // 32 * bits
    qzeros_shape_0 = math.ceil(infeatures / group_size)
    qzeros_shape_1 = outfeatures // 32 * bits
    if qweight_shape_0 == 0 or qzeros_shape_0 == 0 or qzeros_shape_1 == 0:
        pytest.skip(f"{qweight_shape_0=} == 0 or {qzeros_shape_0=} == 0 or {qzeros_shape_1=} == 0")
    if infeatures < group_size:
        pytest.skip(f"{infeatures=} < {group_size=}")
    if infeatures != outfeatures:
        pytest.skip(f"{infeatures=} != {outfeatures=}")
    trainable = False
    use_cuda_fp16 = False
    kernel_switch_threshold = 128
    from auto_gptq.nn_modules.qlinear import qlinear_hpu, qlinear_cuda_old
    quant_hpu = qlinear_hpu.QuantLinear(bits=bits, group_size=group_size, infeatures=infeatures, outfeatures=outfeatures, bias=bias, use_cuda_fp16=use_cuda_fp16, kernel_switch_threshold=kernel_switch_threshold, trainable=trainable, weight_dtype=weight_dtype).to("hpu")
    # Cuda old implementation is the reference, also runs on hpu
    quant_ref_cuda_old = qlinear_cuda_old.QuantLinear(bits=bits, group_size=group_size, infeatures=infeatures, outfeatures=outfeatures, bias=bias, use_cuda_fp16=use_cuda_fp16, kernel_switch_threshold=kernel_switch_threshold, trainable=trainable, weight_dtype=weight_dtype).to("hpu")
    input = torch.rand((infeatures, outfeatures), dtype=weight_dtype).to("hpu")
    _, linear, s = gen_quant4(infeatures, outfeatures, group_size, bias)

    if scales_value == "ones":
        s = torch.ones_like(s)
    if scales_value == "range":
        range_t = torch.tensor(list(range(1, s.numel()+1)), dtype=torch.int32)
        shape_s = s.shape
        s = (torch.ones(s.numel()) * range_t).reshape(shape_s).contiguous()

    if weight_value == "ones":
        linear.weight = torch.nn.Parameter(torch.ones_like(linear.weight))
    elif weight_value == "zeros":
        linear.weight = torch.nn.Parameter(torch.zeros_like(linear.weight))
    elif weight_value == "range":
        shape_w = linear.weight.shape
        weight_local = torch.ones(shape_w, dtype=torch.int32)
        range_t_weight = torch.tensor(list(range(0, 8)), dtype=torch.int32)
        linear.weight = torch.nn.Parameter((torch.ones(weight_local.numel(), dtype=linear.weight.dtype).reshape(-1, 8) * range_t_weight).reshape(shape_w).contiguous())
    elif weight_value.isnumeric():
        linear.weight = torch.nn.Parameter(torch.full_like(linear.weight, int(weight_value)))
    linear.weight = torch.nn.Parameter(linear.weight.to(weight_dtype))

    if zeros_value == "zeros":
        zeros = torch.full((infeatures // group_size, outfeatures), 0, dtype=torch.int32)
    elif zeros_value == "range":
        zeros = torch.ones((infeatures // group_size, outfeatures), dtype=torch.int32)
        range_t_zeros = torch.tensor(list(range(1, 9)), dtype=torch.int32)
        shape_z = zeros.shape
        zeros = (torch.ones(zeros.numel(), dtype=torch.int32).reshape(-1, 8) * range_t_zeros).reshape(shape_z).contiguous()
    elif zeros_value == "eights":
        zeros = torch.full((infeatures // group_size, outfeatures), 8, dtype=torch.int32)
    else:
        zeros = torch.full((infeatures // group_size, outfeatures), 1, dtype=torch.int32)

    htcore.mark_step()

    quant_ref_cuda_old.pack(linear, s.clone().detach().T, zeros.clone().detach().T, g_idx=None)
    htcore.mark_step()
    quant_ref_cuda_old.to("hpu")

    #TODO: pack independently
    quant_hpu.set_packed(quant_ref_cuda_old)
    htcore.mark_step()
    quant_hpu.to("hpu")

    out_ref_cuda_old = quant_ref_cuda_old(input)
    htcore.mark_step()
    quant_hpu.post_init()
    htcore.mark_step()
    out_hpu = quant_hpu(input)
    htcore.mark_step()

    out_ref_cuda_old = out_ref_cuda_old.cpu()
    out_hpu = out_hpu.cpu()
    compare_tensors(out_hpu.cpu(), out_ref_cuda_old.cpu(), rtol = 1e-05, atol = 1e-08)