qlinear_marlin.py 9.85 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Copyright (C) Marlin.2024 Elias Frantar (elias.frantar@ist.ac.at)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from logging import getLogger

import numpy as np
import torch
import torch.nn as nn


logger = getLogger(__name__)

try:
    import autogptq_marlin_cuda
except ImportError as e:
    marlin_import_exception = e

    def error_raiser_marlin(*args, **kwargs):
        raise ValueError(
            f"Trying to use the marlin backend, but could not import the C++/CUDA dependencies with the following error: {marlin_import_exception}"
        )

    autogptq_marlin_cuda = error_raiser_marlin


def mul(A, B, C, s, workspace, thread_k=-1, thread_n=-1, sms=-1, max_par=16):
    """Marlin FP16xINT4 multiply; can be used within `torch.compile`.
    @A: `torch.half` input matrix of shape `(m, k)` in standard row-major layout
    @B: `torch.int` weight matrix of original shape `(k, n)` in Marlin format; see `Layer.pack()`
    @C: `torch.half` out matrix of shape `(m, n)` in standard row-major layout
    @s: `torch.half` scales of shape `(m / group_size, n)`
    @workspace: `torch.int` tensor with at least `n / 128 * max_par` entries that are all zero
    @thread_k: `k` size of a thread_tile in `B` (can usually be left as auto -1)
    @thread_n: `n` size of a thread_tile in `B` (can usually be left as auto -1)
    @sms: number of SMs to use for the kernel (can usually be left as auto -1)
    @max_par: maximum number of batch 64 problems to solve in parallel for large input sizes
    """
    autogptq_marlin_cuda.mul(A, B, C, s, workspace, thread_k, thread_n, sms, max_par)


# Precompute permutations for Marlin weight and scale shuffling


def _get_perms():
    perm = []
    for i in range(32):
        perm1 = []
        col = i // 4
        for block in [0, 1]:
            for row in [
                2 * (i % 4),
                2 * (i % 4) + 1,
                2 * (i % 4 + 4),
                2 * (i % 4 + 4) + 1,
            ]:
                perm1.append(16 * row + col + 8 * block)
        for j in range(4):
            perm.extend([p + 256 * j for p in perm1])

    perm = np.array(perm)
    interleave = np.array([0, 2, 4, 6, 1, 3, 5, 7])
    perm = perm.reshape((-1, 8))[:, interleave].ravel()
    perm = torch.from_numpy(perm)
    scale_perm = []
    for i in range(8):
        scale_perm.extend([i + 8 * j for j in range(8)])
    scale_perm_single = []
    for i in range(4):
        scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
    return perm, scale_perm, scale_perm_single


_perm, _scale_perm, _scale_perm_single = _get_perms()


class QuantLinear(nn.Module):
    QUANT_TYPE = "marlin"

    def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
        super().__init__()

        if torch.version.hip:
            raise ValueError("Can not use Marlin int4*fp16 kernel with AMD ROCm version of PyTorch as the kernel is not compatible. Please do not use `use_marlin=True` when using ROCm devices.")
        if not torch.cuda.get_device_capability()[0] >= 8:
            raise ValueError(f'Can not use Marlin int4*fp16 kernel with a device of compute capability {torch.cuda.get_device_capability()}, the minimum compute capability is 8.0 for Marlin kernel. Please do not use `use_marlin=True`, or please upgrade your GPU ("The more you buy, the more you save." - Taiwanese proverb).')

        if infeatures % 128 != 0 or outfeatures % 256 != 0:
            raise ValueError("`infeatures` must be divisible by 128 and `outfeatures` by 256.")
        if bits not in [4]:
            raise NotImplementedError("Only 4 bits are supported.")
        if group_size not in [-1, 128] and group_size != infeatures:
            raise ValueError("Only group_size -1 and 128 are supported.")
        if infeatures % group_size != 0:
            raise ValueError("`infeatures` must be divisible by `group_size`.")
        if trainable:
            raise NotImplementedError("Marlin does not support train.")

        self.infeatures = infeatures
        self.outfeatures = outfeatures
        self.group_size = group_size if group_size != -1 else infeatures
        self.register_buffer(
            "B",
            torch.empty((self.infeatures // 16, self.outfeatures * 16 // 8), dtype=torch.int),
        )
        self.register_buffer(
            "s",
            torch.empty((self.infeatures // group_size, self.outfeatures), dtype=torch.half),
        )
        # 128 is currently the minimum `tile_n`, hence it gives the maximum workspace size; 16 is the default `max_par`
        self.register_buffer(
            "workspace",
            torch.zeros(self.outfeatures // 128 * 16, dtype=torch.int),
            persistent=False,
        )
        if bias:
            self.register_buffer("bias", torch.zeros((outfeatures), dtype=torch.half))
        else:
            self.bias = None

    def post_init(self):
        pass

    def pack(self, linear, scales):
        """Pack a fake-quantized linear layer into this actual Marlin representation.
        @linear: fake-quantized `torch.nn.Linear` layer to convert (must be of type `torch.half`)
        @scales: corresponding quantization scales of shape `(infeatures, groups)`
        """
        if linear.weight.dtype != torch.half:
            raise ValueError("Only `torch.half` weights are supported.")
        tile = 16
        maxq = 2**4 - 1
        s = scales.t()
        w = linear.weight.data.t()
        if self.group_size != self.infeatures:
            w = w.reshape((-1, self.group_size, self.outfeatures))
            w = w.permute(1, 0, 2)
            w = w.reshape((self.group_size, -1))
            s = s.reshape((1, -1))
        w = torch.round(w / s).int()
        w += (maxq + 1) // 2
        w = torch.clamp(w, 0, maxq)
        if self.group_size != self.infeatures:
            w = w.reshape((self.group_size, -1, self.outfeatures))
            w = w.permute(1, 0, 2)
            w = w.reshape((self.infeatures, self.outfeatures)).contiguous()
            s = s.reshape((-1, len(_scale_perm)))[:, _scale_perm]
        else:
            s = s.reshape((-1, len(_scale_perm_single)))[:, _scale_perm_single]
        s = s.reshape((-1, self.outfeatures)).contiguous()
        w = w.reshape((self.infeatures // tile, tile, self.outfeatures // tile, tile))
        w = w.permute((0, 2, 1, 3))
        w = w.reshape((self.infeatures // tile, self.outfeatures * tile))
        res = w
        res = res.reshape((-1, _perm.numel()))[:, _perm].reshape(res.shape)
        q = np.zeros((res.shape[0], res.shape[1] // 8), dtype=np.uint32)
        res = res.cpu().numpy().astype(np.uint32)
        for i in range(8):
            q |= res[:, i::8] << 4 * i
        q = torch.from_numpy(q.astype(np.int32)).to(w.device)
        self.B[:, :] = q.to(self.B.device)
        self.s[:, :] = s.to(self.s.device)
        if linear.bias is not None:
            if self.bias is not None:
                self.bias[:] = linear.bias.data.to(self.bias.device)
            else:
                self.bias = linear.bias.clone()

    def forward(self, A):
        A = A.half()
        C = torch.empty(A.shape[:-1] + (self.s.shape[1],), dtype=A.dtype, device=A.device)
        mul(
            A.view((-1, A.shape[-1])),
            self.B,
            C.view((-1, C.shape[-1])),
            self.s,
            self.workspace,
        )
        C = C + self.bias if self.bias is not None else C
        return C


# Copied from https://github.com/IST-DASLab/marlin/pull/1
@torch.no_grad()
def unpack_4bit_to_32bit_signed(qweight, qzeros):
    # Unpack 4-bit values and interpret them as signed integers
    unpacked_weights = torch.zeros(
        (qweight.shape[0] * 8, qweight.shape[1]),
        dtype=torch.int8,
        device=qweight.device,
        requires_grad=False,
    )

    unpacked_zeros = torch.zeros(
        (qzeros.shape[0], qzeros.shape[1] * 8),
        dtype=torch.int8,
        device=qzeros.device,
        requires_grad=False,
    )

    for row in range(unpacked_weights.shape[0]):
        i = row % 8
        unpacked_weights[row, :] = (qweight[row // 8, :] >> (4 * i)) & 0xF

    for col in range(unpacked_zeros.shape[1]):
        i = col % 8
        unpacked_zeros[:, col] = (qzeros[:, col // 8] >> (4 * i)) & 0xF

    return unpacked_weights, unpacked_zeros + 1

def unpack_qzeros(qzeros):
    unpacked_zeros = torch.zeros(
        (qzeros.shape[0], qzeros.shape[1] * 8),
        dtype=torch.int8,
        device=qzeros.device,
        requires_grad=False,
    )

    for col in range(unpacked_zeros.shape[1]):
        i = col % 8
        unpacked_zeros[:, col] = (qzeros[:, col // 8] >> (4 * i)) & 0xF

    return unpacked_zeros + 1


# Copied from https://github.com/IST-DASLab/marlin/pull/1
@torch.no_grad()
def dequantize_weight(layer):
    qweight, qzeros, scales = layer.qweight, layer.qzeros, layer.scales
    unpacked_qweight, unpacked_qzeros = unpack_4bit_to_32bit_signed(qweight, qzeros)
    group_size = unpacked_qweight.shape[0] // scales.shape[0]
    scales = scales.repeat_interleave(group_size, dim=0)
    unpacked_qzeros = unpacked_qzeros.repeat_interleave(group_size, dim=0)
    unpacked_qweight = (unpacked_qweight - unpacked_qzeros) * scales

    return unpacked_qweight.T, unpacked_qzeros

def dequantize_qzeros(layer):
    qzeros = layer.qzeros
    unpacked_qzeros = unpack_qzeros(qzeros)
    group_size = layer.group_size
    unpacked_qzeros = unpacked_qzeros.repeat_interleave(group_size, dim=0)

    return unpacked_qzeros


__all__ = ["QuantLinear", "dequantize_weight"]