qlinear_cuda.py 11.8 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import math
from logging import getLogger

import numpy as np
import torch
import torch.nn as nn
import transformers


logger = getLogger(__name__)

try:
    import autogptq_cuda_64
    import autogptq_cuda_256

    _autogptq_cuda_available = True
except ImportError:
    logger.warning("CUDA extension not installed.")
    autogptq_cuda_256 = None
    autogptq_cuda_64 = None
    _autogptq_cuda_available = False


class QuantLinear(nn.Module):
    QUANT_TYPE = "cuda"

    def __init__(
        self,
        bits,
        group_size,
        infeatures,
        outfeatures,
        bias,
        kernel_switch_threshold=128,
        trainable=False,
        weight_dtype=torch.float16,
    ):
        super().__init__()
        global _autogptq_cuda_available
        if bits not in [2, 3, 4, 8]:
            raise NotImplementedError("Only 2,3,4,8 bits are supported.")
        if trainable:
            _autogptq_cuda_available = False

        self.infeatures = infeatures
        self.outfeatures = outfeatures
        self.bits = bits
        self.group_size = group_size if group_size != -1 else infeatures
        self.maxq = 2**self.bits - 1

        self.register_buffer(
            "qweight",
            torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32),
        )
        self.register_buffer(
            "qzeros",
            torch.zeros(
                (
                    math.ceil(infeatures / self.group_size),
                    outfeatures // 32 * self.bits,
                ),
                dtype=torch.int32,
            ),
        )
        self.register_buffer(
            "scales",
            torch.zeros(
                (math.ceil(infeatures / self.group_size), outfeatures),
                dtype=weight_dtype,
            ),
        )
        self.register_buffer(
            "g_idx",
            torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32),
        )
        if bias:
            self.register_buffer("bias", torch.zeros((outfeatures), dtype=weight_dtype))
        else:
            self.bias = None

        # is performed by unpacking the weights and using torch.matmul
        if self.bits in [2, 4, 8]:
            self.wf = torch.tensor(list(range(0, 32, self.bits)), dtype=torch.int32).unsqueeze(0)
        elif self.bits == 3:
            self.wf = torch.tensor(
                [
                    [0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 0],
                    [0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31],
                    [0, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 0],
                ],
                dtype=torch.int32,
            ).reshape(1, 3, 12)

        self.kernel_switch_threshold = kernel_switch_threshold
        self.autogptq_cuda_available = _autogptq_cuda_available

        self.autogptq_cuda = autogptq_cuda_256
        if infeatures % 256 != 0 or outfeatures % 256 != 0:
            self.autogptq_cuda = autogptq_cuda_64
        if infeatures % 64 != 0 or outfeatures % 64 != 0:
            self.autogptq_cuda_available = False

        self.trainable = trainable

    def post_init(self):
        pass

    def pack(self, linear, scales, zeros, g_idx=None):
        W = linear.weight.data.clone()
        if isinstance(linear, nn.Conv2d):
            W = W.flatten(1)
        if isinstance(linear, transformers.pytorch_utils.Conv1D):
            W = W.t()

        self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx

        scales = scales.t().contiguous()
        zeros = zeros.t().contiguous()
        scale_zeros = zeros * scales
        self.scales = scales.clone().to(dtype=linear.weight.dtype)
        if linear.bias is not None:
            self.bias = linear.bias.clone().to(dtype=linear.weight.dtype)

        intweight = []
        for idx in range(self.infeatures):
            intweight.append(
                torch.round((W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[
                    :, None
                ]
            )
        intweight = torch.cat(intweight, dim=1)
        intweight = intweight.t().contiguous()
        intweight = intweight.numpy().astype(np.uint32)

        i = 0
        row = 0
        qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32)
        while row < qweight.shape[0]:
            if self.bits in [2, 4, 8]:
                for j in range(i, i + (32 // self.bits)):
                    qweight[row] |= intweight[j] << (self.bits * (j - i))
                i += 32 // self.bits
                row += 1
            elif self.bits == 3:
                for j in range(i, i + 10):
                    qweight[row] |= intweight[j] << (3 * (j - i))
                i += 10
                qweight[row] |= intweight[i] << 30
                row += 1
                qweight[row] |= (intweight[i] >> 2) & 1
                i += 1
                for j in range(i, i + 10):
                    qweight[row] |= intweight[j] << (3 * (j - i) + 1)
                i += 10
                qweight[row] |= intweight[i] << 31
                row += 1
                qweight[row] |= (intweight[i] >> 1) & 0x3
                i += 1
                for j in range(i, i + 10):
                    qweight[row] |= intweight[j] << (3 * (j - i) + 2)
                i += 10
                row += 1
            else:
                raise NotImplementedError("Only 2,3,4,8 bits are supported.")

        qweight = qweight.astype(np.int32)
        self.qweight = torch.from_numpy(qweight)

        zeros -= 1
        zeros = zeros.numpy().astype(np.uint32)
        qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32)
        i = 0
        col = 0
        while col < qzeros.shape[1]:
            if self.bits in [2, 4, 8]:
                for j in range(i, i + (32 // self.bits)):
                    qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i))
                i += 32 // self.bits
                col += 1
            elif self.bits == 3:
                for j in range(i, i + 10):
                    qzeros[:, col] |= zeros[:, j] << (3 * (j - i))
                i += 10
                qzeros[:, col] |= zeros[:, i] << 30
                col += 1
                qzeros[:, col] |= (zeros[:, i] >> 2) & 1
                i += 1
                for j in range(i, i + 10):
                    qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 1)
                i += 10
                qzeros[:, col] |= zeros[:, i] << 31
                col += 1
                qzeros[:, col] |= (zeros[:, i] >> 1) & 0x3
                i += 1
                for j in range(i, i + 10):
                    qzeros[:, col] |= zeros[:, j] << (3 * (j - i) + 2)
                i += 10
                col += 1
            else:
                raise NotImplementedError("Only 2,3,4,8 bits are supported.")

        qzeros = qzeros.astype(np.int32)
        self.qzeros = torch.from_numpy(qzeros)

    def forward(self, x: torch.Tensor):
        out_shape = x.shape[:-1] + (self.outfeatures,)
        x = x.reshape(-1, x.shape[-1])
        x_dtype = x.dtype
        if (
            x.device.type == "cuda"
            and self.autogptq_cuda_available
            and (self.kernel_switch_threshold == 0 or x.shape[0] < self.kernel_switch_threshold)
        ):
            out = torch.zeros((x.shape[0], self.outfeatures), device=x.device, dtype=torch.float32)
            if self.bits == 2:
                self.autogptq_cuda.vecquant2matmul(
                    x.float(),
                    self.qweight,
                    out,
                    self.scales.float(),
                    self.qzeros,
                    self.g_idx,
                )
            elif self.bits == 3:
                self.autogptq_cuda.vecquant3matmul(
                    x.float(),
                    self.qweight,
                    out,
                    self.scales.float(),
                    self.qzeros,
                    self.g_idx,
                )
            elif self.bits == 4:
                self.autogptq_cuda.vecquant4matmul(
                    x.float(),
                    self.qweight,
                    out,
                    self.scales.float(),
                    self.qzeros,
                    self.g_idx,
                )
            elif self.bits == 8:
                self.autogptq_cuda.vecquant8matmul(
                    x.float(),
                    self.qweight,
                    out,
                    self.scales.float(),
                    self.qzeros,
                    self.g_idx,
                )
            else:
                raise NotImplementedError("Only 2,3,4,8 bits are supported.")
        else:
            if self.wf.device != self.qzeros.device:
                self.wf = self.wf.to(self.qzeros.device)

            if self.bits in [2, 4, 8]:
                zeros = torch.bitwise_right_shift(
                    torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits),
                    self.wf.unsqueeze(0),
                ).to(torch.int16 if self.bits == 8 else torch.int8)
                zeros = torch.bitwise_and(zeros, (2**self.bits) - 1)

                zeros = zeros + 1
                zeros = zeros.reshape(self.scales.shape)

                weight = torch.bitwise_right_shift(
                    torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1),
                    self.wf.unsqueeze(-1),
                ).to(torch.int16 if self.bits == 8 else torch.int8)
                weight = torch.bitwise_and(weight, (2**self.bits) - 1)
            elif self.bits == 3:
                zeros = self.qzeros.reshape(self.qzeros.shape[0], self.qzeros.shape[1] // 3, 3, 1).expand(
                    -1, -1, -1, 12
                )
                zeros = zeros >> self.wf.unsqueeze(0)
                zeros[:, :, 0, 10] = (zeros[:, :, 0, 10] & 0x3) | ((zeros[:, :, 1, 0] << 2) & 0x4)
                zeros[:, :, 1, 11] = (zeros[:, :, 1, 11] & 0x1) | ((zeros[:, :, 2, 0] << 1) & 0x6)
                zeros = zeros & 0x7
                zeros = torch.cat(
                    [zeros[:, :, 0, :11], zeros[:, :, 1, 1:12], zeros[:, :, 2, 1:11]],
                    dim=2,
                )

                zeros = zeros + 1
                zeros = zeros.reshape(self.scales.shape)

                weight = self.qweight.reshape(self.qweight.shape[0] // 3, 3, 1, self.qweight.shape[1]).expand(
                    -1, -1, 12, -1
                )
                weight = (weight >> self.wf.unsqueeze(-1)) & 0x7
                weight[:, 0, 10] = (weight[:, 0, 10] & 0x3) | ((weight[:, 1, 0] << 2) & 0x4)
                weight[:, 1, 11] = (weight[:, 1, 11] & 0x1) | ((weight[:, 2, 0] << 1) & 0x6)
                weight = weight & 0x7
                weight = torch.cat([weight[:, 0, :11], weight[:, 1, 1:12], weight[:, 2, 1:11]], dim=1)
            else:
                raise NotImplementedError("Only 2,3,4,8 bits are supported.")

            weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
            num_itr = self.g_idx.shape[0] // x.shape[-1]
            if num_itr == 1:
                weights = self.scales[self.g_idx.long()] * (weight - zeros[self.g_idx.long()])
            else:
                num_dim = self.g_idx.shape[0] // num_itr
                weights = []
                for i in range(num_itr):
                    scale_i = self.scales[:, i * num_dim : (i + 1) * num_dim]
                    weight_i = weight[:, i * num_dim : (i + 1) * num_dim]
                    zeros_i = zeros[:, i * num_dim : (i + 1) * num_dim]
                    g_idx_i = self.g_idx[i * num_dim : (i + 1) * num_dim]
                    weights.append(scale_i[g_idx_i.long()] * (weight_i - zeros_i[g_idx_i.long()]))
                weights = torch.cat(weights, dim=1)
            out = torch.matmul(x, weights)
        out = out.to(x_dtype)
        out = out.reshape(out_shape)
        out = out + self.bias if self.bias is not None else out
        return out


__all__ = ["QuantLinear"]