test_quant.py 2.56 KB
Newer Older
yangql's avatar
yangql committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from transformers import AutoTokenizer
import torch
import logging
import json
import time
def gptq():

    # Specify paths and hyperparameters for quantization
    model_path = "../../models/qwen/Qwen1___5-7B-Chat"
    quant_path = "./Qwen1.5-7B-4bit-gptq-4"

    quantize_config = BaseQuantizeConfig(
        bits=4, # 4 or 8
        group_size=128,
        damp_percent=0.01,
yangql's avatar
yangql committed
17
        desc_act=True,  # set to False can significantly speed up inference but the perplexity may slightly bad
yangql's avatar
yangql committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        static_groups=False,
        sym=True,
        true_sequential=True,
        model_name_or_path=None,
        model_file_base_name="model"
    )
    max_len = 8192
    
    # Load your tokenizer and model with AutoGPTQ
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = AutoGPTQForCausalLM.from_pretrained(model_path, quantize_config)

    # https://huggingface.co/datasets/llm-wizard/alpaca-gpt4-data-zh
    file_path = '../alpaca_gpt4_data_zh.json'
    # file_path = 'oaast_rm_zh.json'
    messages = []
    with open(file_path, 'r',encoding='UTF-8') as fcc_file:
        fcc_data = json.load(fcc_file)
        for tmp_data in fcc_data:
            instruction = tmp_data['instruction']
            input = tmp_data['input']
            output = tmp_data['output']
            for op in output:
                msg =  [
                        {"role": "system", "content": "You are a helpful assistant."},
                        {"role": "user", "content": instruction + input},
                        {"role": "assistant", "content": op}
                    ]
                messages.append(msg)
                
    print('len(messages):',len(messages))
    messages = messages[:5]
    print('len(messages):',len(messages))
    
    data = []
    for msg in messages:
        text = tokenizer.apply_chat_template(msg, tokenize=False, add_generation_prompt=False)
        # print(text + '\n')
        model_inputs = tokenizer([text])
        input_ids = torch.tensor(model_inputs.input_ids[:max_len], dtype=torch.int)
        data.append(dict(input_ids=input_ids, attention_mask=input_ids.ne(tokenizer.pad_token_id)))
    print('len(data):',len(data))
    t1 = time.time()
    logging.basicConfig(format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
    model.quantize(data, cache_examples_on_gpu=False)
    model.save_quantized(quant_path, use_safetensors=True)
    tokenizer.save_pretrained(quant_path)
    t2 = time.time()
    print(('time:{:.2f}s').format(t2-t1))

yangql's avatar
yangql committed
68
gptq()