Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
AutoAWQ_kernels
Commits
fc700a82
Unverified
Commit
fc700a82
authored
Jan 21, 2024
by
Casper
Committed by
GitHub
Jan 21, 2024
Browse files
Merge pull request #1 from IlyasMoutawwakil/exllama-kernels
Exllama kernels
parents
a22d67a3
cb74e4ee
Changes
35
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
2514 additions
and
19 deletions
+2514
-19
awq_ext/exllamav2/cuda/q_gemm.cuh
awq_ext/exllamav2/cuda/q_gemm.cuh
+33
-0
awq_ext/exllamav2/cuda/q_gemm_kernel.cuh
awq_ext/exllamav2/cuda/q_gemm_kernel.cuh
+487
-0
awq_ext/exllamav2/cuda/q_gemm_kernel_gptq.cuh
awq_ext/exllamav2/cuda/q_gemm_kernel_gptq.cuh
+219
-0
awq_ext/exllamav2/cuda/q_matrix.cu
awq_ext/exllamav2/cuda/q_matrix.cu
+623
-0
awq_ext/exllamav2/cuda/q_matrix.cuh
awq_ext/exllamav2/cuda/q_matrix.cuh
+73
-0
awq_ext/exllamav2/cuda/quant/qdq_2.cuh
awq_ext/exllamav2/cuda/quant/qdq_2.cuh
+103
-0
awq_ext/exllamav2/cuda/quant/qdq_3.cuh
awq_ext/exllamav2/cuda/quant/qdq_3.cuh
+169
-0
awq_ext/exllamav2/cuda/quant/qdq_4.cuh
awq_ext/exllamav2/cuda/quant/qdq_4.cuh
+227
-0
awq_ext/exllamav2/cuda/quant/qdq_5.cuh
awq_ext/exllamav2/cuda/quant/qdq_5.cuh
+207
-0
awq_ext/exllamav2/cuda/quant/qdq_6.cuh
awq_ext/exllamav2/cuda/quant/qdq_6.cuh
+44
-0
awq_ext/exllamav2/cuda/quant/qdq_8.cuh
awq_ext/exllamav2/cuda/quant/qdq_8.cuh
+38
-0
awq_ext/exllamav2/cuda/quant/qdq_util.cuh
awq_ext/exllamav2/cuda/quant/qdq_util.cuh
+51
-0
awq_ext/exllamav2/cuda/util.cuh
awq_ext/exllamav2/cuda/util.cuh
+42
-0
awq_ext/exllamav2/ext.cpp
awq_ext/exllamav2/ext.cpp
+134
-0
setup.py
setup.py
+64
-19
No files found.
awq_ext/exllamav2/cuda/q_gemm.cuh
0 → 100644
View file @
fc700a82
#ifndef _q_gemm_cuh
#define _q_gemm_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#include <ATen/cuda/CUDAContext.h>
#include "q_matrix.cuh"
void
gemm_half_q_half_cuda
(
cublasHandle_t
cublas_handle
,
const
half
*
a
,
QMatrix
*
b
,
half
*
c
,
int
size_m
,
int
size_n
,
int
size_k
,
bool
clear
=
false
,
half
*
reconstruct
=
NULL
,
bool
force_cuda
=
false
);
void
clear_tensor_cuda
(
half
*
c
,
int
size_m
,
int
size_n
);
#endif
\ No newline at end of file
awq_ext/exllamav2/cuda/q_gemm_kernel.cuh
0 → 100644
View file @
fc700a82
#include "compat.cuh"
#include <cuda_runtime.h>
#include <cuda_fp16.h>
__forceinline__
__device__
half2
dot22_8
(
half2
(
&
dq
)[
4
],
const
half
*
a_ptr
,
const
half2
g_result
,
const
half
qs_h
)
{
half2
result
=
{};
const
half2
*
a2_ptr
=
(
const
half2
*
)
a_ptr
;
#pragma unroll
for
(
int
i
=
0
;
i
<
4
;
i
++
)
result
=
__hfma2
(
dq
[
i
],
*
a2_ptr
++
,
result
);
return
__hfma2
(
result
,
__halves2half2
(
qs_h
,
qs_h
),
g_result
);
}
__forceinline__
__device__
half2
dot22_16
(
half2
(
&
dq
)[
8
],
const
half
*
a_ptr
,
const
half2
g_result
,
const
half
qs_h
)
{
half2
result
=
{};
const
half2
*
a2_ptr
=
(
const
half2
*
)
a_ptr
;
#pragma unroll
for
(
int
i
=
0
;
i
<
8
;
i
++
)
result
=
__hfma2
(
dq
[
i
],
*
a2_ptr
++
,
result
);
return
__hfma2
(
result
,
__halves2half2
(
qs_h
,
qs_h
),
g_result
);
}
__forceinline__
__device__
half2
dot22_32
(
half2
(
&
dq
)[
16
],
const
half
*
a_ptr
,
const
half2
g_result
,
const
half
qs_h
)
{
half2
result
=
{};
const
half2
*
a2_ptr
=
(
const
half2
*
)
a_ptr
;
#pragma unroll
for
(
int
i
=
0
;
i
<
16
;
i
+=
1
)
result
=
__hfma2
(
dq
[
i
],
*
a2_ptr
++
,
result
);
return
__hfma2
(
result
,
__halves2half2
(
qs_h
,
qs_h
),
g_result
);
}
__forceinline__
__device__
float
dot22_8_f
(
half2
(
&
dq
)[
4
],
const
half
*
a_ptr
,
const
float
g_result
,
const
float
qs_f
)
{
half2
result
=
{};
const
half2
*
a2_ptr
=
(
const
half2
*
)
a_ptr
;
#pragma unroll
for
(
int
i
=
0
;
i
<
4
;
i
++
)
result
=
__hfma2
(
dq
[
i
],
*
a2_ptr
++
,
result
);
float
result_f
=
__half2float
(
__low2half
(
result
))
+
__half2float
(
__high2half
(
result
));
return
fma
(
result_f
,
qs_f
,
g_result
);
}
__forceinline__
__device__
float
dot22_16_f
(
half2
(
&
dq
)[
8
],
const
half
*
a_ptr
,
const
float
g_result
,
const
float
qs_f
)
{
half2
result
=
{};
const
half2
*
a2_ptr
=
(
const
half2
*
)
a_ptr
;
#pragma unroll
for
(
int
i
=
0
;
i
<
8
;
i
++
)
result
=
__hfma2
(
dq
[
i
],
*
a2_ptr
++
,
result
);
float
result_f
=
__half2float
(
__low2half
(
result
))
+
__half2float
(
__high2half
(
result
));
return
fma
(
result_f
,
qs_f
,
g_result
);
}
__forceinline__
__device__
float
dot22_32_f
(
half2
(
&
dq
)[
16
],
const
half
*
a_ptr
,
const
float
g_result
,
const
float
qs_f
)
{
half2
result
=
{};
const
half2
*
a2_ptr
=
(
const
half2
*
)
a_ptr
;
#pragma unroll
for
(
int
i
=
0
;
i
<
16
;
i
+=
1
)
result
=
__hfma2
(
dq
[
i
],
*
a2_ptr
++
,
result
);
float
result_f
=
__half2float
(
__low2half
(
result
))
+
__half2float
(
__high2half
(
result
));
return
fma
(
result_f
,
qs_f
,
g_result
);
}
typedef
void
(
*
fp_gemm_half_q_half_kernel
)
(
const
half
*
,
const
uint32_t
*
,
const
uint32_t
*
,
const
half
*
,
half
*
,
const
int
,
const
int
,
const
int
,
const
int
,
const
int
,
const
uint16_t
*
,
const
int
,
const
int
,
const
int
,
const
int
,
const
int
,
const
int
,
const
bool
);
template
<
bool
first_block
,
int
m_count
>
__global__
void
gemm_half_q_half_kernel
(
const
half
*
__restrict__
a
,
const
uint32_t
*
__restrict__
b_q_weight
,
const
uint32_t
*
__restrict__
b_q_scale
,
const
half
*
__restrict__
b_q_scale_max
,
half
*
__restrict__
c
,
const
int
size_m
,
const
int
size_n
,
const
int
size_k
,
const
int
groups
,
const
int
groupsize
,
const
uint16_t
*
__restrict__
b_q_perm
,
const
int
rows_8
,
const
int
rows_6
,
const
int
rows_5
,
const
int
rows_4
,
const
int
rows_3
,
const
int
rows_2
,
const
bool
clear
)
{
MatrixView_half
a_
(
a
,
size_m
,
size_k
);
MatrixView_half_rw
c_
(
c
,
size_m
,
size_n
);
MatrixView_q4_row
b_q_scale_
(
b_q_scale
,
groups
,
size_n
);
int
t
=
threadIdx
.
x
;
// Block
int
offset_n
=
blockIdx
.
x
*
BLOCK_KN_SIZE
*
4
;
int
offset_m
=
blockIdx
.
y
*
m_count
;
int
offset_k
=
blockIdx
.
z
*
BLOCK_KN_SIZE
;
int
end_n
=
min
(
offset_n
+
BLOCK_KN_SIZE
*
4
,
size_n
);
int
end_m
=
min
(
offset_m
+
m_count
,
size_m
);
int
end_k
=
min
(
offset_k
+
BLOCK_KN_SIZE
,
size_k
);
int
n
=
offset_n
+
t
*
4
;
// Preload block_a
__shared__
half
block_a
[
m_count
][
BLOCK_KN_SIZE
];
if
(
offset_k
+
t
<
end_k
)
{
for
(
int
m
=
0
;
m
<
m_count
;
++
m
)
{
const
half
*
a_ptr
=
a_
.
item_ptr
(
offset_m
+
m
,
0
);
half
*
block_a_ptr
=
block_a
[
m
];
half
a0
=
a_ptr
[
b_q_perm
[
offset_k
+
t
]];
block_a_ptr
[
t
]
=
a0
;
}
}
// Clear
if
(
n
>=
size_n
)
return
;
if
(
clear
&&
blockIdx
.
z
==
0
)
// && (threadIdx.x & 1) == 0)
{
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
*
((
uint64_t
*
)
c_
.
item_ptr
(
offset_m
+
m
,
n
))
=
0
;
}
__syncthreads
();
// Find initial group
int
group
=
offset_k
/
groupsize
;
// Preload scales
float
scales
[
MAX_GROUPS_IN_BLOCK
][
4
];
int
groups_in_block
=
DIVIDE
((
end_k
-
offset_k
),
groupsize
);
for
(
int
g
=
0
;
g
<
groups_in_block
;
g
++
)
{
int
qscales
[
4
];
b_q_scale_
.
item4
(
qscales
,
group
+
g
,
n
);
qscales
[
0
]
++
;
qscales
[
1
]
++
;
qscales
[
2
]
++
;
qscales
[
3
]
++
;
float
maxscale
=
__half2float
(
b_q_scale_max
[
group
+
g
]);
scales
[
g
][
0
]
=
__int2float_rn
(
qscales
[
0
]
*
qscales
[
0
])
*
maxscale
;
scales
[
g
][
1
]
=
__int2float_rn
(
qscales
[
1
]
*
qscales
[
1
])
*
maxscale
;
scales
[
g
][
2
]
=
__int2float_rn
(
qscales
[
2
]
*
qscales
[
2
])
*
maxscale
;
scales
[
g
][
3
]
=
__int2float_rn
(
qscales
[
3
]
*
qscales
[
3
])
*
maxscale
;
}
// a, b offset
int
pre_rows_8
=
min
(
rows_8
,
offset_k
);
int
pre_rows_6
=
offset_k
>
rows_8
?
min
(
rows_6
,
offset_k
)
-
rows_8
:
0
;
int
pre_rows_5
=
offset_k
>
rows_6
?
min
(
rows_5
,
offset_k
)
-
rows_6
:
0
;
int
pre_rows_4
=
offset_k
>
rows_5
?
min
(
rows_4
,
offset_k
)
-
rows_5
:
0
;
int
pre_rows_3
=
offset_k
>
rows_4
?
min
(
rows_3
,
offset_k
)
-
rows_4
:
0
;
int
pre_rows_2
=
offset_k
>
rows_3
?
min
(
rows_2
,
offset_k
)
-
rows_3
:
0
;
int
qk
=
0
;
qk
+=
pre_rows_8
/
32
*
8
;
qk
+=
pre_rows_6
/
32
*
6
;
qk
+=
pre_rows_5
/
32
*
5
;
qk
+=
pre_rows_4
/
32
*
4
;
qk
+=
pre_rows_3
/
32
*
3
;
qk
+=
pre_rows_2
/
32
*
2
;
const
uint32_t
*
b_ptr
=
b_q_weight
+
qk
*
size_n
+
n
;
const
half
*
a_ptr
=
&
block_a
[
0
][
0
];
int
a_stride
=
BLOCK_KN_SIZE
;
// Initial group
int
scales_idx
=
0
;
float
qs_f0
=
scales
[
scales_idx
][
0
];
float
qs_f1
=
scales
[
scales_idx
][
1
];
float
qs_f2
=
scales
[
scales_idx
][
2
];
float
qs_f3
=
scales
[
scales_idx
][
3
];
int
nextgroup
=
offset_k
+
groupsize
;
// Column result
float
block_c
[
m_count
][
4
]
=
{};
// Dequantize groups
int
k
=
offset_k
;
while
(
k
<
rows_8
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
scales_idx
++
;
qs_f0
=
scales
[
scales_idx
][
0
];
qs_f1
=
scales
[
scales_idx
][
1
];
qs_f2
=
scales
[
scales_idx
][
2
];
qs_f3
=
scales
[
scales_idx
][
3
];
nextgroup
+=
groupsize
;
}
#pragma unroll
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
int4
load_int4
[
2
];
load_int4
[
0
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
load_int4
[
1
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
half2
dq
[
4
][
4
];
dequant_8bit_8
(
load_int4
[
0
].
x
,
load_int4
[
1
].
x
,
dq
[
0
],
size_n
);
dequant_8bit_8
(
load_int4
[
0
].
y
,
load_int4
[
1
].
y
,
dq
[
1
],
size_n
);
dequant_8bit_8
(
load_int4
[
0
].
z
,
load_int4
[
1
].
z
,
dq
[
2
],
size_n
);
dequant_8bit_8
(
load_int4
[
0
].
w
,
load_int4
[
1
].
w
,
dq
[
3
],
size_n
);
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
{
block_c
[
m
][
0
]
=
dot22_8_f
(
dq
[
0
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
0
],
qs_f0
);
block_c
[
m
][
1
]
=
dot22_8_f
(
dq
[
1
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
1
],
qs_f1
);
block_c
[
m
][
2
]
=
dot22_8_f
(
dq
[
2
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
2
],
qs_f2
);
block_c
[
m
][
3
]
=
dot22_8_f
(
dq
[
3
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
3
],
qs_f3
);
}
a_ptr
+=
8
;
}
k
+=
32
;
}
while
(
k
<
rows_6
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
scales_idx
++
;
qs_f0
=
scales
[
scales_idx
][
0
];
qs_f1
=
scales
[
scales_idx
][
1
];
qs_f2
=
scales
[
scales_idx
][
2
];
qs_f3
=
scales
[
scales_idx
][
3
];
nextgroup
+=
groupsize
;
}
#pragma unroll
for
(
int
j
=
0
;
j
<
2
;
j
++
)
{
int4
load_int4
[
3
];
load_int4
[
0
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
load_int4
[
1
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
load_int4
[
2
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
half2
dq
[
4
][
8
];
dequant_6bit_16
(
load_int4
[
0
].
x
,
load_int4
[
1
].
x
,
load_int4
[
2
].
x
,
dq
[
0
],
size_n
);
dequant_6bit_16
(
load_int4
[
0
].
y
,
load_int4
[
1
].
y
,
load_int4
[
2
].
y
,
dq
[
1
],
size_n
);
dequant_6bit_16
(
load_int4
[
0
].
z
,
load_int4
[
1
].
z
,
load_int4
[
2
].
z
,
dq
[
2
],
size_n
);
dequant_6bit_16
(
load_int4
[
0
].
w
,
load_int4
[
1
].
w
,
load_int4
[
2
].
w
,
dq
[
3
],
size_n
);
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
{
block_c
[
m
][
0
]
=
dot22_16_f
(
dq
[
0
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
0
],
qs_f0
);
block_c
[
m
][
1
]
=
dot22_16_f
(
dq
[
1
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
1
],
qs_f1
);
block_c
[
m
][
2
]
=
dot22_16_f
(
dq
[
2
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
2
],
qs_f2
);
block_c
[
m
][
3
]
=
dot22_16_f
(
dq
[
3
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
3
],
qs_f3
);
}
a_ptr
+=
16
;
}
k
+=
32
;
}
while
(
k
<
rows_5
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
scales_idx
++
;
qs_f0
=
scales
[
scales_idx
][
0
];
qs_f1
=
scales
[
scales_idx
][
1
];
qs_f2
=
scales
[
scales_idx
][
2
];
qs_f3
=
scales
[
scales_idx
][
3
];
nextgroup
+=
groupsize
;
}
#pragma unroll
for
(
int
j
=
0
;
j
<
1
;
j
++
)
{
int4
load_int4
[
5
];
load_int4
[
0
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
load_int4
[
1
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
load_int4
[
2
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
load_int4
[
3
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
load_int4
[
4
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
half2
dq
[
4
][
16
];
dequant_5bit_32
(
load_int4
[
0
].
x
,
load_int4
[
1
].
x
,
load_int4
[
2
].
x
,
load_int4
[
3
].
x
,
load_int4
[
4
].
x
,
dq
[
0
],
size_n
);
dequant_5bit_32
(
load_int4
[
0
].
y
,
load_int4
[
1
].
y
,
load_int4
[
2
].
y
,
load_int4
[
3
].
y
,
load_int4
[
4
].
y
,
dq
[
1
],
size_n
);
dequant_5bit_32
(
load_int4
[
0
].
z
,
load_int4
[
1
].
z
,
load_int4
[
2
].
z
,
load_int4
[
3
].
z
,
load_int4
[
4
].
z
,
dq
[
2
],
size_n
);
dequant_5bit_32
(
load_int4
[
0
].
w
,
load_int4
[
1
].
w
,
load_int4
[
2
].
w
,
load_int4
[
3
].
w
,
load_int4
[
4
].
w
,
dq
[
3
],
size_n
);
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
{
block_c
[
m
][
0
]
=
dot22_32_f
(
dq
[
0
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
0
],
qs_f0
);
block_c
[
m
][
1
]
=
dot22_32_f
(
dq
[
1
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
1
],
qs_f1
);
block_c
[
m
][
2
]
=
dot22_32_f
(
dq
[
2
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
2
],
qs_f2
);
block_c
[
m
][
3
]
=
dot22_32_f
(
dq
[
3
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
3
],
qs_f3
);
}
a_ptr
+=
32
;
}
k
+=
32
;
}
while
(
k
<
rows_4
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
scales_idx
++
;
qs_f0
=
scales
[
scales_idx
][
0
];
qs_f1
=
scales
[
scales_idx
][
1
];
qs_f2
=
scales
[
scales_idx
][
2
];
qs_f3
=
scales
[
scales_idx
][
3
];
nextgroup
+=
groupsize
;
}
#pragma unroll
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
int4
load_int4
[
1
];
load_int4
[
0
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
half2
dq
[
4
][
4
];
dequant_4bit_8
(
load_int4
[
0
].
x
,
dq
[
0
],
size_n
);
dequant_4bit_8
(
load_int4
[
0
].
y
,
dq
[
1
],
size_n
);
dequant_4bit_8
(
load_int4
[
0
].
z
,
dq
[
2
],
size_n
);
dequant_4bit_8
(
load_int4
[
0
].
w
,
dq
[
3
],
size_n
);
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
{
block_c
[
m
][
0
]
=
dot22_8_f
(
dq
[
0
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
0
],
qs_f0
);
block_c
[
m
][
1
]
=
dot22_8_f
(
dq
[
1
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
1
],
qs_f1
);
block_c
[
m
][
2
]
=
dot22_8_f
(
dq
[
2
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
2
],
qs_f2
);
block_c
[
m
][
3
]
=
dot22_8_f
(
dq
[
3
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
3
],
qs_f3
);
}
a_ptr
+=
8
;
}
k
+=
32
;
}
while
(
k
<
rows_3
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
scales_idx
++
;
qs_f0
=
scales
[
scales_idx
][
0
];
qs_f1
=
scales
[
scales_idx
][
1
];
qs_f2
=
scales
[
scales_idx
][
2
];
qs_f3
=
scales
[
scales_idx
][
3
];
nextgroup
+=
groupsize
;
}
#pragma unroll
for
(
int
j
=
0
;
j
<
1
;
j
++
)
{
int4
load_int4
[
3
];
load_int4
[
0
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
load_int4
[
1
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
load_int4
[
2
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
half2
dq
[
4
][
16
];
dequant_3bit_32
(
load_int4
[
0
].
x
,
load_int4
[
1
].
x
,
load_int4
[
2
].
x
,
dq
[
0
],
size_n
);
dequant_3bit_32
(
load_int4
[
0
].
y
,
load_int4
[
1
].
y
,
load_int4
[
2
].
y
,
dq
[
1
],
size_n
);
dequant_3bit_32
(
load_int4
[
0
].
z
,
load_int4
[
1
].
z
,
load_int4
[
2
].
z
,
dq
[
2
],
size_n
);
dequant_3bit_32
(
load_int4
[
0
].
w
,
load_int4
[
1
].
w
,
load_int4
[
2
].
w
,
dq
[
3
],
size_n
);
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
{
block_c
[
m
][
0
]
=
dot22_32_f
(
dq
[
0
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
0
],
qs_f0
);
block_c
[
m
][
1
]
=
dot22_32_f
(
dq
[
1
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
1
],
qs_f1
);
block_c
[
m
][
2
]
=
dot22_32_f
(
dq
[
2
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
2
],
qs_f2
);
block_c
[
m
][
3
]
=
dot22_32_f
(
dq
[
3
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
3
],
qs_f3
);
}
a_ptr
+=
32
;
}
k
+=
32
;
}
while
(
k
<
rows_2
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
scales_idx
++
;
qs_f0
=
scales
[
scales_idx
][
0
];
qs_f1
=
scales
[
scales_idx
][
1
];
qs_f2
=
scales
[
scales_idx
][
2
];
qs_f3
=
scales
[
scales_idx
][
3
];
nextgroup
+=
groupsize
;
}
#pragma unroll
for
(
int
j
=
0
;
j
<
2
;
j
++
)
{
int4
load_int4
[
1
];
load_int4
[
0
]
=
*
((
int4
*
)
b_ptr
);
b_ptr
+=
size_n
;
half2
dq
[
4
][
8
];
dequant_2bit_16
(
load_int4
[
0
].
x
,
dq
[
0
],
size_n
);
dequant_2bit_16
(
load_int4
[
0
].
y
,
dq
[
1
],
size_n
);
dequant_2bit_16
(
load_int4
[
0
].
z
,
dq
[
2
],
size_n
);
dequant_2bit_16
(
load_int4
[
0
].
w
,
dq
[
3
],
size_n
);
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
{
block_c
[
m
][
0
]
=
dot22_16_f
(
dq
[
0
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
0
],
qs_f0
);
block_c
[
m
][
1
]
=
dot22_16_f
(
dq
[
1
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
1
],
qs_f1
);
block_c
[
m
][
2
]
=
dot22_16_f
(
dq
[
2
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
2
],
qs_f2
);
block_c
[
m
][
3
]
=
dot22_16_f
(
dq
[
3
],
a_ptr
+
m
*
a_stride
,
block_c
[
m
][
3
],
qs_f3
);
}
a_ptr
+=
16
;
}
k
+=
32
;
}
// Accumulate column sums in c
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
{
half2
*
out
=
(
half2
*
)
c_
.
item_ptr
(
offset_m
+
m
,
n
);
half2
result01
=
__halves2half2
(
__float2half_rn
(
block_c
[
m
][
0
]),
__float2half_rn
(
block_c
[
m
][
1
]));
half2
result23
=
__halves2half2
(
__float2half_rn
(
block_c
[
m
][
2
]),
__float2half_rn
(
block_c
[
m
][
3
]));
atomicAdd
(
out
,
result01
);
atomicAdd
(
out
+
1
,
result23
);
}
}
fp_gemm_half_q_half_kernel
pick_gemm_half_q_half_kernel
(
bool
first_block
,
const
int
m_count
)
{
#if BLOCK_M_SIZE_MAX >= 1
if
(
m_count
==
1
)
return
gemm_half_q_half_kernel
<
true
,
1
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 2
if
(
m_count
==
2
)
return
gemm_half_q_half_kernel
<
true
,
2
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 3
if
(
m_count
==
3
)
return
gemm_half_q_half_kernel
<
true
,
3
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 4
if
(
m_count
==
4
)
return
gemm_half_q_half_kernel
<
true
,
4
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 5
if
(
m_count
==
5
)
return
gemm_half_q_half_kernel
<
true
,
5
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 6
if
(
m_count
==
6
)
return
gemm_half_q_half_kernel
<
true
,
6
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 7
if
(
m_count
==
7
)
return
gemm_half_q_half_kernel
<
true
,
7
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 8
if
(
m_count
==
8
)
return
gemm_half_q_half_kernel
<
true
,
8
>
;
#endif
return
NULL
;
}
awq_ext/exllamav2/cuda/q_gemm_kernel_gptq.cuh
0 → 100644
View file @
fc700a82
#include "compat.cuh"
__forceinline__
__device__
half2
dot22_8
(
half2
(
&
dq
)[
4
],
const
half
*
a_ptr
,
const
half2
g_result
)
{
half2
result
=
{};
const
half2
*
a2_ptr
=
(
const
half2
*
)
a_ptr
;
#pragma unroll
for
(
int
i
=
0
;
i
<
4
;
i
++
)
result
=
__hfma2
(
dq
[
i
],
*
a2_ptr
++
,
result
);
return
__hadd2
(
result
,
g_result
);
}
__forceinline__
__device__
float
dot22_8_f
(
half2
(
&
dq
)[
4
],
const
half
*
a_ptr
)
{
half2
result
=
{};
const
half2
*
a2_ptr
=
(
const
half2
*
)
a_ptr
;
#pragma unroll
for
(
int
i
=
0
;
i
<
4
;
i
++
)
result
=
__hfma2
(
dq
[
i
],
*
a2_ptr
++
,
result
);
return
__half2float
(
__low2half
(
result
))
+
__half2float
(
__high2half
(
result
));
}
typedef
void
(
*
fp_gemm_half_q_half_gptq_kernel
)
(
const
half
*
,
const
uint32_t
*
,
const
uint32_t
*
,
const
half
*
,
half
*
,
const
int
,
const
int
,
const
int
,
const
int
,
const
int
,
const
uint16_t
*
,
const
int
,
const
bool
);
template
<
bool
first_block
,
int
m_count
>
__global__
void
gemm_half_q_half_gptq_kernel
(
const
half
*
__restrict__
a
,
const
uint32_t
*
__restrict__
b_q_weight
,
const
uint32_t
*
__restrict__
b_gptq_qzeros
,
const
half
*
__restrict__
b_gptq_scales
,
half
*
__restrict__
c
,
const
int
size_m
,
const
int
size_n
,
const
int
size_k
,
const
int
groups
,
const
int
groupsize
,
const
uint16_t
*
__restrict__
b_q_perm
,
const
int
rows_4
,
const
bool
clear
)
{
MatrixView_half
a_
(
a
,
size_m
,
size_k
);
MatrixView_half_rw
c_
(
c
,
size_m
,
size_n
);
MatrixView_q4_row
b_gptq_qzeros_
(
b_gptq_qzeros
,
groups
,
size_n
);
MatrixView_half
b_gptq_scales_
(
b_gptq_scales
,
groups
,
size_n
);
int
t
=
threadIdx
.
x
;
// Block
int
offset_n
=
blockIdx
.
x
*
BLOCK_KN_SIZE
*
4
;
int
offset_m
=
blockIdx
.
y
*
m_count
;
int
offset_k
=
blockIdx
.
z
*
BLOCK_KN_SIZE
;
int
end_n
=
min
(
offset_n
+
BLOCK_KN_SIZE
*
4
,
size_n
);
int
end_m
=
min
(
offset_m
+
m_count
,
size_m
);
int
end_k
=
min
(
offset_k
+
BLOCK_KN_SIZE
,
size_k
);
int
n
=
offset_n
+
t
*
4
;
// Preload block_a
__shared__
half
block_a
[
m_count
][
BLOCK_KN_SIZE
];
if
(
offset_k
+
t
<
end_k
)
{
for
(
int
m
=
0
;
m
<
m_count
;
++
m
)
{
const
half
*
a_ptr
=
a_
.
item_ptr
(
offset_m
+
m
,
0
);
half
*
block_a_ptr
=
block_a
[
m
];
half
a0
;
if
(
b_q_perm
)
a0
=
a_ptr
[
b_q_perm
[
offset_k
+
t
]];
else
a0
=
a_ptr
[
offset_k
+
t
];
block_a_ptr
[
t
]
=
a0
;
}
}
// Zero output
if
(
n
>=
size_n
)
return
;
if
(
clear
&&
blockIdx
.
z
==
0
)
// && (threadIdx.x & 1) == 0)
{
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
*
((
uint64_t
*
)
c_
.
item_ptr
(
offset_m
+
m
,
n
))
=
0
;
}
__syncthreads
();
// Find initial group
int
group
=
offset_k
/
groupsize
;
int
nextgroup
=
offset_k
+
groupsize
;
// a, b offset
int
qk
=
offset_k
/
(
32
/
4
);
const
uint32_t
*
b_ptr
=
b_q_weight
+
qk
*
size_n
+
n
;
const
half
*
a_ptr
=
&
block_a
[
0
][
0
];
int
a_stride
=
BLOCK_KN_SIZE
;
// Initial group
int
zeros
[
4
];
float
scales
[
4
];
half2
z1z16
[
4
][
2
];
half2
y1y16
[
4
][
2
];
b_gptq_qzeros_
.
item4
(
zeros
,
group
,
n
);
b_gptq_scales_
.
item4_f
(
scales
,
group
,
n
);
dequant_4bit_8_prep_zero
((
zeros
[
0
]
+
1
)
&
0x0f
,
z1z16
[
0
],
y1y16
[
0
]);
dequant_4bit_8_prep_zero
((
zeros
[
1
]
+
1
)
&
0x0f
,
z1z16
[
1
],
y1y16
[
1
]);
dequant_4bit_8_prep_zero
((
zeros
[
2
]
+
1
)
&
0x0f
,
z1z16
[
2
],
y1y16
[
2
]);
dequant_4bit_8_prep_zero
((
zeros
[
3
]
+
1
)
&
0x0f
,
z1z16
[
3
],
y1y16
[
3
]);
// __syncthreads();
// Column result
float
block_c
[
m_count
][
4
]
=
{};
// Dequantize and multiply
int
k
=
offset_k
;
while
(
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
nextgroup
+=
groupsize
;
b_gptq_qzeros_
.
item4
(
zeros
,
group
,
n
);
b_gptq_scales_
.
item4_f
(
scales
,
group
,
n
);
dequant_4bit_8_prep_zero
((
zeros
[
0
]
+
1
)
&
0x0f
,
z1z16
[
0
],
y1y16
[
0
]);
dequant_4bit_8_prep_zero
((
zeros
[
1
]
+
1
)
&
0x0f
,
z1z16
[
1
],
y1y16
[
1
]);
dequant_4bit_8_prep_zero
((
zeros
[
2
]
+
1
)
&
0x0f
,
z1z16
[
2
],
y1y16
[
2
]);
dequant_4bit_8_prep_zero
((
zeros
[
3
]
+
1
)
&
0x0f
,
z1z16
[
3
],
y1y16
[
3
]);
}
#pragma unroll
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
const
int4
*
b_ptr4
=
(
int4
*
)
b_ptr
;
int4
load_int4
=
*
b_ptr4
;
half2
dq
[
4
][
4
];
dequant_4bit_8_gptq
(
load_int4
.
x
,
dq
[
0
],
z1z16
[
0
],
y1y16
[
0
],
size_n
,
false
);
dequant_4bit_8_gptq
(
load_int4
.
y
,
dq
[
1
],
z1z16
[
1
],
y1y16
[
1
],
size_n
,
false
);
dequant_4bit_8_gptq
(
load_int4
.
z
,
dq
[
2
],
z1z16
[
2
],
y1y16
[
2
],
size_n
,
false
);
dequant_4bit_8_gptq
(
load_int4
.
w
,
dq
[
3
],
z1z16
[
3
],
y1y16
[
3
],
size_n
,
false
);
#pragma unroll
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
{
block_c
[
m
][
0
]
=
fma
(
dot22_8_f
(
dq
[
0
],
a_ptr
+
m
*
a_stride
),
scales
[
0
],
block_c
[
m
][
0
]);
block_c
[
m
][
1
]
=
fma
(
dot22_8_f
(
dq
[
1
],
a_ptr
+
m
*
a_stride
),
scales
[
1
],
block_c
[
m
][
1
]);
block_c
[
m
][
2
]
=
fma
(
dot22_8_f
(
dq
[
2
],
a_ptr
+
m
*
a_stride
),
scales
[
2
],
block_c
[
m
][
2
]);
block_c
[
m
][
3
]
=
fma
(
dot22_8_f
(
dq
[
3
],
a_ptr
+
m
*
a_stride
),
scales
[
3
],
block_c
[
m
][
3
]);
}
b_ptr
+=
size_n
;
a_ptr
+=
8
;
}
k
+=
32
;
}
for
(
int
m
=
0
;
m
<
m_count
;
m
++
)
{
half2
*
out
=
(
half2
*
)
c_
.
item_ptr
(
offset_m
+
m
,
n
);
half2
result01
=
__halves2half2
(
__float2half_rn
(
block_c
[
m
][
0
]),
__float2half_rn
(
block_c
[
m
][
1
]));
half2
result23
=
__halves2half2
(
__float2half_rn
(
block_c
[
m
][
2
]),
__float2half_rn
(
block_c
[
m
][
3
]));
atomicAdd
(
out
,
result01
);
atomicAdd
(
out
+
1
,
result23
);
}
}
fp_gemm_half_q_half_gptq_kernel
pick_gemm_half_q_half_gptq_kernel
(
bool
first_block
,
const
int
m_count
)
{
#if BLOCK_M_SIZE_MAX >= 1
if
(
m_count
==
1
)
return
gemm_half_q_half_gptq_kernel
<
true
,
1
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 2
if
(
m_count
==
2
)
return
gemm_half_q_half_gptq_kernel
<
true
,
2
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 3
if
(
m_count
==
3
)
return
gemm_half_q_half_gptq_kernel
<
true
,
3
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 4
if
(
m_count
==
4
)
return
gemm_half_q_half_gptq_kernel
<
true
,
4
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 5
if
(
m_count
==
5
)
return
gemm_half_q_half_gptq_kernel
<
true
,
5
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 6
if
(
m_count
==
6
)
return
gemm_half_q_half_gptq_kernel
<
true
,
6
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 7
if
(
m_count
==
7
)
return
gemm_half_q_half_gptq_kernel
<
true
,
7
>
;
#endif
#if BLOCK_M_SIZE_MAX >= 8
if
(
m_count
==
8
)
return
gemm_half_q_half_gptq_kernel
<
true
,
8
>
;
#endif
return
NULL
;
}
awq_ext/exllamav2/cuda/q_matrix.cu
0 → 100644
View file @
fc700a82
#include "q_matrix.cuh"
#include "matrix_view.cuh"
#include "util.cuh"
#include "quant/qdq_2.cuh"
#include "quant/qdq_3.cuh"
#include "quant/qdq_4.cuh"
#include "quant/qdq_5.cuh"
#include "quant/qdq_6.cuh"
#include "quant/qdq_8.cuh"
#define BLOCK_KN_SIZE 128
#define THREADS_X 32
#define THREADS_Y 32
// Shuffle quantized data on load
__global__
void
shuffle_kernel
(
uint32_t
*
__restrict__
b_q_weight
,
const
int
size_k
,
const
int
size_n
,
const
int
rows_8
,
const
int
rows_6
,
const
int
rows_5
,
const
int
rows_4
,
const
int
rows_3
,
const
int
rows_2
)
{
int
n
=
blockIdx
.
x
*
THREADS_X
+
threadIdx
.
x
;
if
(
n
>=
size_n
)
return
;
int
k
=
0
;
uint32_t
*
b_ptr
=
b_q_weight
+
n
;
while
(
k
<
rows_8
)
{
shuffle_8bit_4
(
b_ptr
,
size_n
);
b_ptr
+=
1
*
size_n
;
k
+=
4
;
}
while
(
k
<
rows_6
)
{
shuffle_6bit_16
(
b_ptr
,
size_n
);
b_ptr
+=
3
*
size_n
;
k
+=
16
;
}
while
(
k
<
rows_5
)
{
shuffle_5bit_32
(
b_ptr
,
size_n
);
b_ptr
+=
5
*
size_n
;
k
+=
32
;
}
while
(
k
<
rows_4
)
{
shuffle_4bit_8
(
b_ptr
,
size_n
);
b_ptr
+=
1
*
size_n
;
k
+=
8
;
}
while
(
k
<
rows_3
)
{
shuffle_3bit_32
(
b_ptr
,
size_n
);
b_ptr
+=
3
*
size_n
;
k
+=
32
;
}
while
(
k
<
rows_2
)
{
shuffle_2bit_16
(
b_ptr
,
size_n
);
b_ptr
+=
1
*
size_n
;
k
+=
16
;
}
}
// QMatrix constructor
QMatrix
::
QMatrix
(
const
int
_device
,
const
int
_height
,
const
int
_width
,
const
int
_groups
,
uint32_t
*
_q_weight
,
uint16_t
*
_q_perm
,
uint16_t
*
_q_invperm
,
uint32_t
*
_q_scale
,
half
*
_q_scale_max
,
uint16_t
*
_q_groups
,
uint32_t
*
_gptq_qzeros
,
half
*
_gptq_scales
,
uint32_t
*
_gptq_g_idx
,
half
*
_temp_dq
)
:
device
(
_device
),
height
(
_height
),
width
(
_width
),
groups
(
_groups
),
temp_dq
(
_temp_dq
)
{
cudaSetDevice
(
device
);
failed
=
false
;
cuda_q_weight
=
_q_weight
;
cuda_q_perm
=
_q_perm
;
cuda_q_invperm
=
_q_invperm
;
cuda_q_scale
=
_q_scale
;
cuda_q_scale_max
=
_q_scale_max
;
cuda_q_groups
=
_q_groups
;
cuda_gptq_qzeros
=
_gptq_qzeros
;
cuda_gptq_scales
=
_gptq_scales
;
is_gptq
=
(
_gptq_qzeros
!=
NULL
);
groupsize
=
1
;
while
(
groupsize
*
groups
<
height
)
groupsize
*=
2
;
// Create group map
rows_8
=
0
;
rows_6
=
0
;
rows_5
=
0
;
rows_4
=
0
;
rows_3
=
0
;
rows_2
=
0
;
if
(
!
is_gptq
)
{
uint16_t
*
cpu_q_groups
=
(
uint16_t
*
)
calloc
(
groups
*
2
,
sizeof
(
uint16_t
));
cudaMemcpy
(
cpu_q_groups
,
cuda_q_groups
,
groups
*
2
*
sizeof
(
uint16_t
),
cudaMemcpyDeviceToHost
);
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
int
bits
=
cpu_q_groups
[
i
*
2
];
if
(
bits
==
8
)
rows_8
+=
groupsize
;
if
(
bits
==
6
)
rows_6
+=
groupsize
;
if
(
bits
==
5
)
rows_5
+=
groupsize
;
if
(
bits
==
4
)
rows_4
+=
groupsize
;
if
(
bits
==
3
)
rows_3
+=
groupsize
;
if
(
bits
==
2
)
rows_2
+=
groupsize
;
}
free
(
cpu_q_groups
);
rows_6
+=
rows_8
;
rows_5
+=
rows_6
;
rows_4
+=
rows_5
;
rows_3
+=
rows_4
;
rows_2
+=
rows_3
;
}
else
{
rows_4
=
height
;
rows_3
=
height
;
rows_2
=
height
;
if
(
_gptq_g_idx
)
{
if
(
!
make_sequential
(
_gptq_g_idx
))
{
failed
=
true
;
//printf("FAIL\n");
return
;
}
}
}
// Shuffle quantized data
dim3
blockDim
,
gridDim
;
blockDim
.
x
=
THREADS_X
;
blockDim
.
y
=
1
;
gridDim
.
x
=
DIVIDE
(
width
,
THREADS_X
);
gridDim
.
y
=
1
;
shuffle_kernel
<<<
gridDim
,
blockDim
>>>
(
cuda_q_weight
,
height
,
width
,
rows_8
,
rows_6
,
rows_5
,
rows_4
,
rows_3
,
rows_2
);
}
QMatrix
::~
QMatrix
()
{
}
// Reconstruct b[k,n] (GPTQ)
__global__
void
reconstruct_gptq_kernel
(
const
uint32_t
*
__restrict__
b_q_weight
,
const
uint16_t
*
__restrict__
b_q_perm
,
const
uint32_t
*
__restrict__
b_gptq_qzeros
,
const
half
*
__restrict__
b_gptq_scales
,
//const uint16_t* __restrict__ b_q_groups,
const
int
size_k
,
const
int
size_n
,
const
int
groupsize
,
const
int
groups
,
half
*
__restrict__
b
,
const
int
rows_4
)
{
MatrixView_half_rw
b_
(
b
,
size_k
,
size_n
);
MatrixView_q4_row
b_gptq_qzeros_
(
b_gptq_qzeros
,
groups
,
size_n
);
MatrixView_half
b_gptq_scales_
(
b_gptq_scales
,
groups
,
size_n
);
int
offset_k
=
BLOCK_KN_SIZE
*
blockIdx
.
y
;
int
offset_n
=
BLOCK_KN_SIZE
*
blockIdx
.
x
*
4
;
int
end_k
=
min
(
offset_k
+
BLOCK_KN_SIZE
,
size_k
);
// Preload remapping table
__shared__
uint16_t
perm
[
BLOCK_KN_SIZE
];
int
t
=
threadIdx
.
x
;
if
(
b_q_perm
)
{
if
(
offset_k
+
t
<
size_k
)
perm
[
t
]
=
b_q_perm
[
offset_k
+
t
];
}
// Column
int
n
=
offset_n
+
t
*
4
;
if
(
n
>=
size_n
)
return
;
// Find initial group
int
group
=
offset_k
/
groupsize
;
int
nextgroup
=
offset_k
+
groupsize
;
// b offset
int
qk
=
offset_k
/
(
32
/
4
);
const
uint32_t
*
b_ptr
=
b_q_weight
+
qk
*
size_n
+
n
;
// Initial zeros/scale
int
zeros
[
4
];
half2
scales
[
4
];
half2
z1z16
[
4
][
2
];
half2
y1y16
[
4
][
2
];
b_gptq_qzeros_
.
item4
(
zeros
,
group
,
n
);
b_gptq_scales_
.
item4_h2
(
scales
,
group
,
n
);
dequant_4bit_8_prep_zero
((
zeros
[
0
]
+
1
)
&
0x0f
,
z1z16
[
0
],
y1y16
[
0
]);
dequant_4bit_8_prep_zero
((
zeros
[
1
]
+
1
)
&
0x0f
,
z1z16
[
1
],
y1y16
[
1
]);
dequant_4bit_8_prep_zero
((
zeros
[
2
]
+
1
)
&
0x0f
,
z1z16
[
2
],
y1y16
[
2
]);
dequant_4bit_8_prep_zero
((
zeros
[
3
]
+
1
)
&
0x0f
,
z1z16
[
3
],
y1y16
[
3
]);
__syncthreads
();
int
k
=
offset_k
;
int
lk
=
0
;
while
(
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
nextgroup
+=
groupsize
;
b_gptq_qzeros_
.
item4
(
zeros
,
group
,
n
);
b_gptq_scales_
.
item4_h2
(
scales
,
group
,
n
);
dequant_4bit_8_prep_zero
((
zeros
[
0
]
+
1
)
&
0x0f
,
z1z16
[
0
],
y1y16
[
0
]);
dequant_4bit_8_prep_zero
((
zeros
[
1
]
+
1
)
&
0x0f
,
z1z16
[
1
],
y1y16
[
1
]);
dequant_4bit_8_prep_zero
((
zeros
[
2
]
+
1
)
&
0x0f
,
z1z16
[
2
],
y1y16
[
2
]);
dequant_4bit_8_prep_zero
((
zeros
[
3
]
+
1
)
&
0x0f
,
z1z16
[
3
],
y1y16
[
3
]);
}
for
(
int
p
=
0
;
p
<
4
;
p
++
)
{
half2
dq
[
4
][
4
];
const
int4
*
b_ptr4
=
(
int4
*
)
b_ptr
;
int4
load_int4
=
*
b_ptr4
;
dequant_4bit_8_gptq
(
load_int4
.
x
,
dq
[
0
],
z1z16
[
0
],
y1y16
[
0
],
size_n
,
false
);
dequant_4bit_8_gptq
(
load_int4
.
y
,
dq
[
1
],
z1z16
[
1
],
y1y16
[
1
],
size_n
,
false
);
dequant_4bit_8_gptq
(
load_int4
.
z
,
dq
[
2
],
z1z16
[
2
],
y1y16
[
2
],
size_n
,
false
);
dequant_4bit_8_gptq
(
load_int4
.
w
,
dq
[
3
],
z1z16
[
3
],
y1y16
[
3
],
size_n
,
false
);
b_ptr
+=
size_n
;
//half* dqh = (half*)dq;
if
(
b_q_perm
)
{
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
for
(
int
v
=
0
;
v
<
4
;
v
++
)
dq
[
v
][
j
]
=
__hmul2
(
scales
[
v
],
dq
[
v
][
j
]);
b_
.
set4
(
perm
[
lk
++
],
n
,
__low2half
(
dq
[
0
][
j
]),
__low2half
(
dq
[
1
][
j
]),
__low2half
(
dq
[
2
][
j
]),
__low2half
(
dq
[
3
][
j
]));
b_
.
set4
(
perm
[
lk
++
],
n
,
__high2half
(
dq
[
0
][
j
]),
__high2half
(
dq
[
1
][
j
]),
__high2half
(
dq
[
2
][
j
]),
__high2half
(
dq
[
3
][
j
]));
}
}
else
{
for
(
int
j
=
0
;
j
<
4
;
j
++
)
{
for
(
int
v
=
0
;
v
<
4
;
v
++
)
dq
[
v
][
j
]
=
__hmul2
(
scales
[
v
],
dq
[
v
][
j
]);
b_
.
set4
(
offset_k
+
lk
++
,
n
,
__low2half
(
dq
[
0
][
j
]),
__low2half
(
dq
[
1
][
j
]),
__low2half
(
dq
[
2
][
j
]),
__low2half
(
dq
[
3
][
j
]));
b_
.
set4
(
offset_k
+
lk
++
,
n
,
__high2half
(
dq
[
0
][
j
]),
__high2half
(
dq
[
1
][
j
]),
__high2half
(
dq
[
2
][
j
]),
__high2half
(
dq
[
3
][
j
]));
}
}
}
k
+=
32
;
}
}
// Reconstruct b[k,n]
__global__
void
reconstruct_kernel
(
const
uint32_t
*
__restrict__
b_q_weight
,
const
uint16_t
*
__restrict__
b_q_perm
,
const
uint32_t
*
__restrict__
b_q_scale
,
const
half
*
__restrict__
b_q_scale_max
,
//const uint16_t* __restrict__ b_q_groups,
const
int
size_k
,
const
int
size_n
,
const
int
groupsize
,
const
int
groups
,
half
*
__restrict__
b
,
const
int
rows_8
,
const
int
rows_6
,
const
int
rows_5
,
const
int
rows_4
,
const
int
rows_3
,
const
int
rows_2
)
{
MatrixView_half_rw
b_
(
b
,
size_k
,
size_n
);
MatrixView_q4_row
b_q_scale_
(
b_q_scale
,
groups
,
size_n
);
int
offset_k
=
BLOCK_KN_SIZE
*
blockIdx
.
y
;
int
offset_n
=
BLOCK_KN_SIZE
*
blockIdx
.
x
;
// Preload remapping table
int
t
=
threadIdx
.
x
;
__shared__
uint16_t
perm
[
BLOCK_KN_SIZE
];
if
(
offset_k
+
t
<
size_k
)
perm
[
t
]
=
b_q_perm
[
offset_k
+
t
];
// Column
int
n
=
offset_n
+
t
;
if
(
n
>=
size_n
)
return
;
// Find initial group
int
group
=
offset_k
/
groupsize
;
int
pre_rows_8
=
min
(
rows_8
,
offset_k
);
int
pre_rows_6
=
offset_k
>
rows_8
?
min
(
rows_6
,
offset_k
)
-
rows_8
:
0
;
int
pre_rows_5
=
offset_k
>
rows_6
?
min
(
rows_5
,
offset_k
)
-
rows_6
:
0
;
int
pre_rows_4
=
offset_k
>
rows_5
?
min
(
rows_4
,
offset_k
)
-
rows_5
:
0
;
int
pre_rows_3
=
offset_k
>
rows_4
?
min
(
rows_3
,
offset_k
)
-
rows_4
:
0
;
int
pre_rows_2
=
offset_k
>
rows_3
?
min
(
rows_2
,
offset_k
)
-
rows_3
:
0
;
int
qk
=
0
;
qk
+=
pre_rows_8
/
32
*
8
;
qk
+=
pre_rows_6
/
32
*
6
;
qk
+=
pre_rows_5
/
32
*
5
;
qk
+=
pre_rows_4
/
32
*
4
;
qk
+=
pre_rows_3
/
32
*
3
;
qk
+=
pre_rows_2
/
32
*
2
;
const
uint32_t
*
b_ptr
=
b_q_weight
+
qk
*
size_n
+
n
;
half
qs_h
=
dq_scale
(
b_q_scale_
.
item
(
group
,
n
),
b_q_scale_max
[
group
]);
half2
qs_h2
=
__halves2half2
(
qs_h
,
qs_h
);
int
nextgroup
=
offset_k
+
groupsize
;
int
end_k
=
min
(
offset_k
+
BLOCK_KN_SIZE
,
size_k
);
int
k
=
offset_k
;
int
lk
=
0
;
__syncthreads
();
while
(
k
<
rows_8
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
qs_h
=
dq_scale
(
b_q_scale_
.
item
(
group
,
n
),
b_q_scale_max
[
group
]);
nextgroup
+=
groupsize
;
qs_h2
=
__halves2half2
(
qs_h
,
qs_h
);
}
for
(
int
p
=
0
;
p
<
4
;
p
++
)
{
half2
dq
[
4
];
uint32_t
q_0
=
*
b_ptr
;
b_ptr
+=
size_n
;
uint32_t
q_1
=
*
b_ptr
;
b_ptr
+=
size_n
;
dequant_8bit_8
(
q_0
,
q_1
,
dq
,
size_n
);
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dq
[
j
]
=
__hmul2
(
dq
[
j
],
qs_h2
);
half
*
dqh
=
(
half
*
)
dq
;
for
(
int
j
=
0
;
j
<
8
;
j
++
)
b_
.
set
(
perm
[
lk
++
],
n
,
dqh
[
j
]);
}
k
+=
32
;
}
while
(
k
<
rows_6
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
qs_h
=
dq_scale
(
b_q_scale_
.
item
(
group
,
n
),
b_q_scale_max
[
group
]);
nextgroup
+=
groupsize
;
qs_h2
=
__halves2half2
(
qs_h
,
qs_h
);
}
for
(
int
p
=
0
;
p
<
2
;
p
++
)
{
half2
dq
[
8
];
uint32_t
q_0
=
*
b_ptr
;
b_ptr
+=
size_n
;
uint32_t
q_1
=
*
b_ptr
;
b_ptr
+=
size_n
;
uint32_t
q_2
=
*
b_ptr
;
b_ptr
+=
size_n
;
dequant_6bit_16
(
q_0
,
q_1
,
q_2
,
dq
,
size_n
);
for
(
int
j
=
0
;
j
<
8
;
j
++
)
dq
[
j
]
=
__hmul2
(
dq
[
j
],
qs_h2
);
half
*
dqh
=
(
half
*
)
dq
;
for
(
int
j
=
0
;
j
<
16
;
j
++
)
b_
.
set
(
perm
[
lk
++
],
n
,
dqh
[
j
]);
}
k
+=
32
;
}
while
(
k
<
rows_5
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
qs_h
=
dq_scale
(
b_q_scale_
.
item
(
group
,
n
),
b_q_scale_max
[
group
]);
nextgroup
+=
groupsize
;
qs_h2
=
__halves2half2
(
qs_h
,
qs_h
);
}
for
(
int
p
=
0
;
p
<
1
;
p
++
)
{
half2
dq
[
16
];
uint32_t
q_0
=
*
b_ptr
;
b_ptr
+=
size_n
;
uint32_t
q_1
=
*
b_ptr
;
b_ptr
+=
size_n
;
uint32_t
q_2
=
*
b_ptr
;
b_ptr
+=
size_n
;
uint32_t
q_3
=
*
b_ptr
;
b_ptr
+=
size_n
;
uint32_t
q_4
=
*
b_ptr
;
b_ptr
+=
size_n
;
dequant_5bit_32
(
q_0
,
q_1
,
q_2
,
q_3
,
q_4
,
dq
,
size_n
);
for
(
int
j
=
0
;
j
<
16
;
j
++
)
dq
[
j
]
=
__hmul2
(
dq
[
j
],
qs_h2
);
half
*
dqh
=
(
half
*
)
dq
;
for
(
int
j
=
0
;
j
<
32
;
j
++
)
b_
.
set
(
perm
[
lk
++
],
n
,
dqh
[
j
]);
}
k
+=
32
;
}
while
(
k
<
rows_4
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
qs_h
=
dq_scale
(
b_q_scale_
.
item
(
group
,
n
),
b_q_scale_max
[
group
]);
nextgroup
+=
groupsize
;
qs_h2
=
__halves2half2
(
qs_h
,
qs_h
);
}
for
(
int
p
=
0
;
p
<
4
;
p
++
)
{
half2
dq
[
4
];
uint32_t
q_0
=
*
b_ptr
;
b_ptr
+=
size_n
;
dequant_4bit_8
(
q_0
,
dq
,
size_n
);
for
(
int
j
=
0
;
j
<
4
;
j
++
)
dq
[
j
]
=
__hmul2
(
dq
[
j
],
qs_h2
);
half
*
dqh
=
(
half
*
)
dq
;
for
(
int
j
=
0
;
j
<
8
;
j
++
)
b_
.
set
(
perm
[
lk
++
],
n
,
dqh
[
j
]);
}
k
+=
32
;
}
while
(
k
<
rows_3
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
qs_h
=
dq_scale
(
b_q_scale_
.
item
(
group
,
n
),
b_q_scale_max
[
group
]);
nextgroup
+=
groupsize
;
qs_h2
=
__halves2half2
(
qs_h
,
qs_h
);
}
for
(
int
p
=
0
;
p
<
1
;
p
++
)
{
half2
dq
[
16
];
uint32_t
q_0
=
*
b_ptr
;
b_ptr
+=
size_n
;
uint32_t
q_1
=
*
b_ptr
;
b_ptr
+=
size_n
;
uint32_t
q_2
=
*
b_ptr
;
b_ptr
+=
size_n
;
dequant_3bit_32
(
q_0
,
q_1
,
q_2
,
dq
,
size_n
);
for
(
int
j
=
0
;
j
<
16
;
j
++
)
dq
[
j
]
=
__hmul2
(
dq
[
j
],
qs_h2
);
half
*
dqh
=
(
half
*
)
dq
;
for
(
int
j
=
0
;
j
<
32
;
j
++
)
b_
.
set
(
perm
[
lk
++
],
n
,
dqh
[
j
]);
}
k
+=
32
;
}
while
(
k
<
rows_2
&&
k
<
end_k
)
{
if
(
k
==
nextgroup
)
{
group
++
;
qs_h
=
dq_scale
(
b_q_scale_
.
item
(
group
,
n
),
b_q_scale_max
[
group
]);
nextgroup
+=
groupsize
;
qs_h2
=
__halves2half2
(
qs_h
,
qs_h
);
}
for
(
int
p
=
0
;
p
<
2
;
p
++
)
{
half2
dq
[
8
];
uint32_t
q_0
=
*
b_ptr
;
b_ptr
+=
size_n
;
dequant_2bit_16
(
q_0
,
dq
,
size_n
);
for
(
int
j
=
0
;
j
<
8
;
j
++
)
dq
[
j
]
=
__hmul2
(
dq
[
j
],
qs_h2
);
half
*
dqh
=
(
half
*
)
dq
;
for
(
int
j
=
0
;
j
<
16
;
j
++
)
b_
.
set
(
perm
[
lk
++
],
n
,
dqh
[
j
]);
}
k
+=
32
;
}
}
void
QMatrix
::
reconstruct
(
half
*
out
)
{
dim3
blockDim
,
gridDim
;
blockDim
.
x
=
BLOCK_KN_SIZE
;
blockDim
.
y
=
1
;
gridDim
.
y
=
DIVIDE
(
height
,
BLOCK_KN_SIZE
);
if
(
!
is_gptq
)
{
gridDim
.
x
=
DIVIDE
(
width
,
BLOCK_KN_SIZE
);
reconstruct_kernel
<<<
gridDim
,
blockDim
>>>
(
cuda_q_weight
,
cuda_q_perm
,
cuda_q_scale
,
cuda_q_scale_max
,
//cuda_q_groups,
height
,
width
,
groupsize
,
groups
,
out
,
rows_8
,
rows_6
,
rows_5
,
rows_4
,
rows_3
,
rows_2
);
}
else
{
gridDim
.
x
=
DIVIDE
(
width
,
BLOCK_KN_SIZE
*
4
);
reconstruct_gptq_kernel
<<<
gridDim
,
blockDim
>>>
(
cuda_q_weight
,
cuda_q_perm
,
cuda_gptq_qzeros
,
cuda_gptq_scales
,
//const uint16_t* __restrict__ b_q_groups,
height
,
width
,
groupsize
,
groups
,
out
,
rows_4
);
}
}
__global__
void
make_sequential_kernel
(
const
uint32_t
*
__restrict__
w
,
uint32_t
*
__restrict__
w_new
,
const
uint16_t
*
__restrict__
q_perm
,
const
int
w_height
,
const
int
w_width
)
{
const
uint64_t
*
w2
=
(
uint64_t
*
)
w
;
uint64_t
*
w_new2
=
(
uint64_t
*
)
w_new
;
int
w2_stride
=
w_width
>>
1
;
int
w2_column
=
THREADS_X
*
blockIdx
.
x
+
threadIdx
.
x
;
if
(
w2_column
>=
w2_stride
)
return
;
int
w_new2_row
=
blockIdx
.
y
;
int
q_perm_idx
=
w_new2_row
<<
3
;
uint64_t
dst
=
0
;
#pragma unroll
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
int
source_row
=
q_perm
[
q_perm_idx
++
];
int
w2_row
=
source_row
>>
3
;
int
w2_subrow
=
source_row
&
0x07
;
int
w2_row_shift
=
w2_subrow
<<
2
;
int
wnew2_row_shift
=
i
<<
2
;
uint64_t
src
=
w2
[
w2_row
*
w2_stride
+
w2_column
];
src
>>=
w2_row_shift
;
src
&=
0x0000000f0000000f
;
src
<<=
wnew2_row_shift
;
dst
|=
src
;
}
w_new2
[
w_new2_row
*
w2_stride
+
w2_column
]
=
dst
;
}
bool
QMatrix
::
make_sequential
(
const
uint32_t
*
cpu_g_idx
)
{
uint32_t
*
cuda_new_qweight
=
NULL
;
cudaError_t
err
=
cudaMalloc
(
&
cuda_new_qweight
,
height
/
8
*
width
*
sizeof
(
uint32_t
));
if
(
err
!=
cudaSuccess
)
{
cudaError_t
cuda_status
=
cudaGetLastError
();
// Clear error
return
false
;
}
uint32_t
*
cpu_g_idx_map
=
(
uint32_t
*
)
calloc
(
groups
,
sizeof
(
uint32_t
));
uint32_t
*
cpu_x_map
=
(
uint32_t
*
)
malloc
(
height
*
sizeof
(
uint32_t
));
uint32_t
*
cpu_x_map_inv
=
(
uint32_t
*
)
malloc
(
height
*
sizeof
(
uint32_t
));
// Group histogram
for
(
int
i
=
0
;
i
<
height
;
i
++
)
cpu_g_idx_map
[
cpu_g_idx
[
i
]]
++
;
// Group map
for
(
int
i
=
0
,
acc
=
0
;
i
<
groups
;
i
++
)
{
short
tmp
=
cpu_g_idx_map
[
i
];
cpu_g_idx_map
[
i
]
=
acc
;
acc
+=
tmp
;
}
// X map (inverse)
for
(
int
row
=
0
;
row
<
height
;
row
++
)
{
uint32_t
target_group
=
cpu_g_idx
[
row
];
uint32_t
target_row
=
cpu_g_idx_map
[
target_group
];
cpu_g_idx_map
[
target_group
]
++
;
cpu_x_map_inv
[
row
]
=
target_row
;
}
// X map
for
(
int
row
=
0
;
row
<
height
;
row
++
)
cpu_x_map
[
cpu_x_map_inv
[
row
]]
=
row
;
// Reduce to uint16_t
uint16_t
*
cpu_x_map16
=
(
uint16_t
*
)
cpu_x_map
;
uint16_t
*
cpu_x_map_inv16
=
(
uint16_t
*
)
cpu_x_map_inv
;
for
(
int
row
=
0
;
row
<
height
;
row
++
)
cpu_x_map16
[
row
]
=
(
uint16_t
)
cpu_x_map
[
row
];
for
(
int
row
=
0
;
row
<
height
;
row
++
)
cpu_x_map_inv16
[
row
]
=
(
uint16_t
)
cpu_x_map_inv
[
row
];
// Move to CUDA
cudaMemcpyAsync
(
cuda_q_perm
,
cpu_x_map16
,
height
*
sizeof
(
uint16_t
),
cudaMemcpyHostToDevice
);
cudaMemcpyAsync
(
cuda_q_invperm
,
cpu_x_map_inv16
,
height
*
sizeof
(
uint16_t
),
cudaMemcpyHostToDevice
);
// Rearrange rows in w
dim3
blockDim
,
gridDim
;
blockDim
.
x
=
THREADS_X
;
blockDim
.
y
=
1
;
gridDim
.
x
=
DIVIDE
(
width
,
THREADS_X
);
gridDim
.
y
=
height
/
8
;
make_sequential_kernel
<<<
gridDim
,
blockDim
>>>
(
cuda_q_weight
,
cuda_new_qweight
,
cuda_q_perm
,
height
/
8
,
width
);
// Replace qweights
cudaMemcpyAsync
(
cuda_q_weight
,
cuda_new_qweight
,
height
/
8
*
width
*
sizeof
(
uint32_t
),
cudaMemcpyDeviceToDevice
);
// Cleanup
cudaDeviceSynchronize
();
cudaFree
(
cuda_new_qweight
);
free
(
cpu_g_idx_map
);
free
(
cpu_x_map
);
free
(
cpu_x_map_inv
);
return
true
;
}
awq_ext/exllamav2/cuda/q_matrix.cuh
0 → 100644
View file @
fc700a82
#ifndef _q_matrix_cuh
#define _q_matrix_cuh
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#define MAX_SUPERGROUPS 16
class
QMatrix
{
public:
int
device
;
bool
is_gptq
;
int
height
;
int
width
;
int
groups
;
int
groupsize
;
int
rows_8
;
int
rows_6
;
int
rows_5
;
int
rows_4
;
int
rows_3
;
int
rows_2
;
uint32_t
*
cuda_q_weight
=
NULL
;
uint16_t
*
cuda_q_perm
=
NULL
;
uint16_t
*
cuda_q_invperm
=
NULL
;
uint32_t
*
cuda_q_scale
=
NULL
;
half
*
cuda_q_scale_max
=
NULL
;
uint16_t
*
cuda_q_groups
=
NULL
;
uint32_t
*
cuda_gptq_qzeros
=
NULL
;
half
*
cuda_gptq_scales
=
NULL
;
half
*
temp_dq
;
bool
failed
;
QMatrix
(
const
int
_device
,
const
int
_height
,
const
int
_width
,
const
int
_groups
,
uint32_t
*
_q_weight
,
uint16_t
*
_q_perm
,
uint16_t
*
_q_invperm
,
uint32_t
*
_q_scale
,
half
*
_q_scale_max
,
uint16_t
*
_q_groups
,
uint32_t
*
_gptq_qzeros
,
half
*
_gptq_scales
,
uint32_t
*
_gptq_g_idx
,
half
*
_temp_dq
);
~
QMatrix
();
void
reconstruct
(
half
*
out
);
bool
make_sequential
(
const
uint32_t
*
cpu_g_idx
);
private:
};
#endif
awq_ext/exllamav2/cuda/quant/qdq_2.cuh
0 → 100644
View file @
fc700a82
#ifndef _qdq_2_cuh
#define _qdq_2_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_2BIT == 1
// Permutation:
//
// ffddbb99 77553311 eeccaa88 66442200
__forceinline__
__device__
void
shuffle_2bit_16
(
uint32_t
*
q
,
int
stride
)
{
uint32_t
qa
=
q
[
0
];
uint32_t
qb
=
0
;
#pragma unroll
for
(
int
i
=
0
;
i
<
8
;
i
++
)
{
uint32_t
qa0
=
qa
&
0x03
;
uint32_t
qa1
=
(
qa
&
0x0c
)
>>
2
;
qa
>>=
4
;
qb
|=
(
qa1
<<
(
i
*
2
+
16
));
qb
|=
(
qa0
<<
(
i
*
2
));
}
q
[
0
]
=
qb
;
}
__forceinline__
__device__
void
dequant_2bit_16
(
const
uint32_t
q_0
,
half2
(
&
dq
)[
8
],
int
stride
)
{
const
uint32_t
c0
=
0x64006400
;
const
half
y4_
=
__float2half_rn
(
1.0
f
/
4.0
f
);
const
half
y16_
=
__float2half_rn
(
1.0
f
/
16.0
f
);
const
half
y64_
=
__float2half_rn
(
1.0
f
/
64.0
f
);
const
half2
y4
=
__halves2half2
(
y4_
,
y4_
);
const
half2
y16
=
__halves2half2
(
y16_
,
y16_
);
const
half2
y64
=
__halves2half2
(
y64_
,
y64_
);
const
half
z1_
=
__float2half_rn
(
-
1024.0
f
-
2.0
f
);
const
half
z4_
=
__float2half_rn
(
-
1024.0
f
/
4.0
f
-
2.0
f
);
const
half
z16_
=
__float2half_rn
(
-
1024.0
f
/
16.0
f
-
2.0
f
);
const
half
z64_
=
__float2half_rn
(
-
1024.0
f
/
64.0
f
-
2.0
f
);
const
half2
z1
=
__halves2half2
(
z1_
,
z1_
);
const
half2
z4
=
__halves2half2
(
z4_
,
z4_
);
const
half2
z16
=
__halves2half2
(
z16_
,
z16_
);
const
half2
z64
=
__halves2half2
(
z64_
,
z64_
);
uint32_t
qa
=
q_0
;
half2_uint32
q0
((
qa
&
0x00030003
)
|
c0
);
// half2(q[ 0], q[ 1]) + 1024
half2_uint32
q1
((
qa
&
0x000c000c
)
|
c0
);
// half2(q[ 2], q[ 3]) * 4 + 1024
half2_uint32
q2
((
qa
&
0x00300030
)
|
c0
);
// half2(q[ 4], q[ 5]) * 16 + 1024
half2_uint32
q3
((
qa
&
0x00c000c0
)
|
c0
);
// half2(q[ 6], q[ 7]) * 64 + 1024
qa
>>=
8
;
half2_uint32
q4
((
qa
&
0x00030003
)
|
c0
);
// half2(q[ 8], q[ 8]) + 1024
half2_uint32
q5
((
qa
&
0x000c000c
)
|
c0
);
// half2(q[10], q[11]) * 4 + 1024
half2_uint32
q6
((
qa
&
0x00300030
)
|
c0
);
// half2(q[12], q[13]) * 16 + 1024
half2_uint32
q7
((
qa
&
0x00c000c0
)
|
c0
);
// half2(q[14], q[15]) * 64 + 1024
dq
[
0
]
=
__hadd2
(
q0
.
as_half2
,
z1
);
dq
[
1
]
=
__hfma2
(
q1
.
as_half2
,
y4
,
z4
);
dq
[
2
]
=
__hfma2
(
q2
.
as_half2
,
y16
,
z16
);
dq
[
3
]
=
__hfma2
(
q3
.
as_half2
,
y64
,
z64
);
dq
[
4
]
=
__hadd2
(
q4
.
as_half2
,
z1
);
dq
[
5
]
=
__hfma2
(
q5
.
as_half2
,
y4
,
z4
);
dq
[
6
]
=
__hfma2
(
q6
.
as_half2
,
y16
,
z16
);
dq
[
7
]
=
__hfma2
(
q7
.
as_half2
,
y64
,
z64
);
}
#else
__forceinline__
__device__
void
shuffle_2bit_16
(
uint32_t
*
q
,
int
stride
)
{
}
__forceinline__
__device__
void
dequant_2bit_16
(
const
uint32_t
q_0
,
half2
(
&
dq
)[
8
],
int
stride
)
{
half
dqh
[
16
];
for
(
int
i
=
0
;
i
<
16
;
i
++
)
dqh
[
i
]
=
dq_ns
(
exb
(
q_0
,
i
*
2
,
0x03
),
2
);
for
(
int
i
=
0
;
i
<
8
;
i
++
)
dq
[
i
]
=
__halves2half2
(
dqh
[
i
*
2
],
dqh
[
i
*
2
+
1
]);
}
#endif
#endif
\ No newline at end of file
awq_ext/exllamav2/cuda/quant/qdq_3.cuh
0 → 100644
View file @
fc700a82
#ifndef _qdq_3_cuh
#define _qdq_3_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_3BIT == 1
// Permutation:
//
// v9997775 55333111 u8886664 44222000 (u, v lsb)
// vjjjhhhf ffdddbbb uiiiggge eecccaaa
// vtttrrrp ppnnnlll usssqqqo oommmkkk
__forceinline__
__device__
void
shuffle_3bit_32
(
uint32_t
*
q
,
int
stride
)
{
uint32_t
qa
=
q
[
0
*
stride
];
uint32_t
qb
=
q
[
1
*
stride
];
uint32_t
qc
=
q
[
2
*
stride
];
// qa: aa999888 77766655 54443332 22111000
// qb: lkkkjjji iihhhggg fffeeedd dcccbbba
// qc: vvvuuutt tsssrrrq qqpppooo nnnmmmll
uint32_t
qd
=
qc
>>
26
;
qc
<<=
4
;
qc
|=
qb
>>
28
;
qb
<<=
2
;
qb
|=
qa
>>
30
;
// qa: ..999888 77766655 54443332 22111000
// qb: ..jjjiii hhhgggff feeedddc ccbbbaaa
// qc: ..tttsss rrrqqqpp pooonnnm mmlllkkk
// qd: vvvuuu
uint32_t
za
=
0
;
uint32_t
zb
=
0
;
uint32_t
zc
=
0
;
for
(
int
i
=
0
;
i
<
5
;
i
++
)
{
uint32_t
t0
=
qa
&
0x07
;
uint32_t
t1
=
(
qa
&
0x38
)
>>
3
;
qa
>>=
6
;
za
|=
(
t0
<<
(
i
*
3
));
za
|=
(
t1
<<
(
i
*
3
+
16
));
}
for
(
int
i
=
0
;
i
<
5
;
i
++
)
{
uint32_t
t0
=
qb
&
0x07
;
uint32_t
t1
=
(
qb
&
0x38
)
>>
3
;
qb
>>=
6
;
zb
|=
(
t0
<<
(
i
*
3
));
zb
|=
(
t1
<<
(
i
*
3
+
16
));
}
for
(
int
i
=
0
;
i
<
5
;
i
++
)
{
uint32_t
t0
=
qc
&
0x07
;
uint32_t
t1
=
(
qc
&
0x38
)
>>
3
;
qc
>>=
6
;
zc
|=
(
t0
<<
(
i
*
3
));
zc
|=
(
t1
<<
(
i
*
3
+
16
));
}
// za: 9997775 55333111 8886664 44222000
// zb: jjjhhhf ffdddbbb iiiggge eecccaaa
// zc: tttrrrp ppnnnlll sssqqqo oommmkkk
// qd: vvvuuu
za
|=
((
qd
&
0x01
)
>>
0
)
<<
15
;
zb
|=
((
qd
&
0x02
)
>>
1
)
<<
15
;
zc
|=
((
qd
&
0x04
)
>>
2
)
<<
15
;
za
|=
((
qd
&
0x08
)
>>
3
)
<<
31
;
zb
|=
((
qd
&
0x10
)
>>
4
)
<<
31
;
zc
|=
((
qd
&
0x20
)
>>
5
)
<<
31
;
// za: v9997775 55333111 u8886664 44222000 (u, v lsb)
// zb: vjjjhhhf ffdddbbb uiiiggge eecccaaa
// zc: vtttrrrp ppnnnlll usssqqqo oommmkkk
q
[
0
*
stride
]
=
za
;
q
[
1
*
stride
]
=
zb
;
q
[
2
*
stride
]
=
zc
;
}
__forceinline__
__device__
void
dequant_3bit_32
(
const
uint32_t
q_0
,
const
uint32_t
q_1
,
const
uint32_t
q_2
,
half2
(
&
dq
)[
16
],
int
stride
)
{
const
uint32_t
c0
=
0x64006400
;
const
half
y8_
=
__float2half_rn
(
1.0
f
/
8.0
f
);
const
half
y64_
=
__float2half_rn
(
1.0
f
/
64.0
f
);
const
half2
y8
=
__halves2half2
(
y8_
,
y8_
);
const
half2
y64
=
__halves2half2
(
y64_
,
y64_
);
const
half
z1_
=
__float2half_rn
(
-
1024.0
f
-
4.0
f
);
const
half
z8_
=
__float2half_rn
(
-
1024.0
f
/
8.0
f
-
4.0
f
);
const
half
z64_
=
__float2half_rn
(
-
1024.0
f
/
64.0
f
-
4.0
f
);
const
half2
z1
=
__halves2half2
(
z1_
,
z1_
);
const
half2
z8
=
__halves2half2
(
z8_
,
z8_
);
const
half2
z64
=
__halves2half2
(
z64_
,
z64_
);
uint32_t
qa
=
q_0
;
uint32_t
qb
=
q_1
;
uint32_t
qc
=
q_2
;
half2_uint32
q0
((
qa
&
0x00070007
)
|
c0
);
// half2(q[ 0], q[ 1]) + 1024
half2_uint32
q1
((
qa
&
0x00380038
)
|
c0
);
// half2(q[ 2], q[ 3]) * 8 + 1024
qa
>>=
6
;
half2_uint32
q2
((
qa
&
0x00070007
)
|
c0
);
// half2(q[ 4], q[ 5]) + 1024
half2_uint32
q3
((
qa
&
0x00380038
)
|
c0
);
// half2(q[ 6], q[ 7]) * 8 + 1024
half2_uint32
q4
((
qa
&
0x01c001c0
)
|
c0
);
// half2(q[ 8], q[ 9]) * 64 + 1024
qa
>>=
9
;
qa
&=
0x00010001
;
half2_uint32
q5
((
qb
&
0x00070007
)
|
c0
);
// half2(q[10], q[11]) + 1024
half2_uint32
q6
((
qb
&
0x00380038
)
|
c0
);
// half2(q[12], q[13]) * 8 + 1024
qb
>>=
6
;
half2_uint32
q7
((
qb
&
0x00070007
)
|
c0
);
// half2(q[14], q[15]) + 1024
half2_uint32
q8
((
qb
&
0x00380038
)
|
c0
);
// half2(q[16], q[17]) * 8 + 1024
half2_uint32
q9
((
qb
&
0x01c001c0
)
|
c0
);
// half2(q[18], q[19]) * 64 + 1024
qb
>>=
8
;
qb
&=
0x00020002
;
half2_uint32
q10
((
qc
&
0x00070007
)
|
c0
);
// half2(q[20], q[21]) + 1024
half2_uint32
q11
((
qc
&
0x00380038
)
|
c0
);
// half2(q[22], q[23]) * 8 + 1024
qc
>>=
6
;
half2_uint32
q12
((
qc
&
0x00070007
)
|
c0
);
// half2(q[24], q[25]) + 1024
half2_uint32
q13
((
qc
&
0x00380038
)
|
c0
);
// half2(q[26], q[27]) * 8 + 1024
half2_uint32
q14
((
qc
&
0x01c001c0
)
|
c0
);
// half2(q[28], q[29]) * 64 + 1024
qc
>>=
7
;
qc
&=
0x00040004
;
half2_uint32
q15
((
qa
|
qb
|
qc
)
|
c0
);
dq
[
0
]
=
__hadd2
(
q0
.
as_half2
,
z1
);
dq
[
1
]
=
__hfma2
(
q1
.
as_half2
,
y8
,
z8
);
dq
[
2
]
=
__hadd2
(
q2
.
as_half2
,
z1
);
dq
[
3
]
=
__hfma2
(
q3
.
as_half2
,
y8
,
z8
);
dq
[
4
]
=
__hfma2
(
q4
.
as_half2
,
y64
,
z64
);
dq
[
5
]
=
__hadd2
(
q5
.
as_half2
,
z1
);
dq
[
6
]
=
__hfma2
(
q6
.
as_half2
,
y8
,
z8
);
dq
[
7
]
=
__hadd2
(
q7
.
as_half2
,
z1
);
dq
[
8
]
=
__hfma2
(
q8
.
as_half2
,
y8
,
z8
);
dq
[
9
]
=
__hfma2
(
q9
.
as_half2
,
y64
,
z64
);
dq
[
10
]
=
__hadd2
(
q10
.
as_half2
,
z1
);
dq
[
11
]
=
__hfma2
(
q11
.
as_half2
,
y8
,
z8
);
dq
[
12
]
=
__hadd2
(
q12
.
as_half2
,
z1
);
dq
[
13
]
=
__hfma2
(
q13
.
as_half2
,
y8
,
z8
);
dq
[
14
]
=
__hfma2
(
q14
.
as_half2
,
y64
,
z64
);
dq
[
15
]
=
__hadd2
(
q15
.
as_half2
,
z1
);
}
#else
__forceinline__
__device__
void
shuffle_3bit_32
(
uint32_t
*
q
,
int
stride
)
{
}
__forceinline__
__device__
void
dequant_3bit_32
(
const
uint32_t
q_0
,
const
uint32_t
q_1
,
const
uint32_t
q_2
,
half2
(
&
dq
)[
16
],
int
stride
)
{
half
dqh
[
32
];
for
(
int
i
=
0
;
i
<
10
;
i
++
)
dqh
[
i
]
=
dq_ns
(
exb
(
q_0
,
i
*
3
,
0x07
),
4
);
dqh
[
10
]
=
dq_ns
(
exb
(
q_1
,
q_0
,
30
,
0x07
),
4
);
for
(
int
i
=
0
;
i
<
10
;
i
++
)
dqh
[
11
+
i
]
=
dq_ns
(
exb
(
q_1
,
i
*
3
+
1
,
0x07
),
4
);
dqh
[
21
]
=
dq_ns
(
exb
(
q_2
,
q_1
,
31
,
0x07
),
4
);
for
(
int
i
=
0
;
i
<
10
;
i
++
)
dqh
[
22
+
i
]
=
dq_ns
(
exb
(
q_2
,
i
*
3
+
2
,
0x07
),
4
);
for
(
int
i
=
0
;
i
<
16
;
i
++
)
dq
[
i
]
=
__halves2half2
(
dqh
[
i
*
2
],
dqh
[
i
*
2
+
1
]);
}
#endif
#endif
awq_ext/exllamav2/cuda/quant/qdq_4.cuh
0 → 100644
View file @
fc700a82
#ifndef _qdq_4_cuh
#define _qdq_4_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_4BIT == 1
// Permutation:
//
// 77775555 33331111 66664444 22220000
__forceinline__
__device__
void
shuffle_4bit_8
(
uint32_t
*
q
,
int
stride
)
{
uint32_t
qa
=
q
[
0
];
uint32_t
qb
=
0
;
#pragma unroll
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
uint32_t
qa0
=
qa
&
0x0f
;
uint32_t
qa1
=
(
qa
&
0xf0
)
>>
4
;
qa
>>=
8
;
qb
|=
(
qa1
<<
(
i
*
4
+
16
));
qb
|=
(
qa0
<<
(
i
*
4
));
}
q
[
0
]
=
qb
;
}
__forceinline__
__device__
void
dequant_4bit_8
(
const
uint32_t
q_0
,
half2
(
&
dq
)[
4
],
int
stride
)
{
const
uint32_t
c0
=
0x64006400
;
const
half
y16_
=
__float2half_rn
(
1.0
f
/
16.0
f
);
const
half2
y16
=
__halves2half2
(
y16_
,
y16_
);
const
half
z1_
=
__float2half_rn
(
-
1024.0
f
-
8.0
f
);
const
half
z16_
=
__float2half_rn
(
-
1024.0
f
/
16.0
f
-
8.0
f
);
const
half2
z1
=
__halves2half2
(
z1_
,
z1_
);
const
half2
z16
=
__halves2half2
(
z16_
,
z16_
);
uint32_t
qa
=
q_0
;
half2_uint32
q0
((
qa
&
0x000f000f
)
|
c0
);
// half2(q[ 0], q[ 1]) + 1024
half2_uint32
q1
((
qa
&
0x00f000f0
)
|
c0
);
// half2(q[ 2], q[ 3]) * 16 + 1024
qa
>>=
8
;
half2_uint32
q2
((
qa
&
0x000f000f
)
|
c0
);
// half2(q[ 4], q[ 5]) + 1024
half2_uint32
q3
((
qa
&
0x00f000f0
)
|
c0
);
// half2(q[ 6], q[ 7]) * 16 + 1024
dq
[
0
]
=
__hadd2
(
q0
.
as_half2
,
z1
);
dq
[
1
]
=
__hfma2
(
q1
.
as_half2
,
y16
,
z16
);
dq
[
2
]
=
__hadd2
(
q2
.
as_half2
,
z1
);
dq
[
3
]
=
__hfma2
(
q3
.
as_half2
,
y16
,
z16
);
}
__forceinline__
__device__
void
dequant_4bit_8_prep_zero_scale
(
const
uint32_t
zero
,
const
half
scale
,
half2
(
&
z1z16
)[
2
],
half2
(
&
y1y16
)[
2
]
)
{
half_uint16
z1
(
0xe400
|
zero
);
// half(-1024.0f - zero);
half
z16
=
__hsub
(
__int2half_rn
(
-
64
),
__int2half_rn
(
zero
));
half2
scale2
=
__half2half2
(
scale
);
z1z16
[
0
]
=
__hmul2
(
scale2
,
__half2half2
(
z1
.
as_half
));
z1z16
[
1
]
=
__hmul2
(
scale2
,
__half2half2
(
z16
));
const
half
y1
=
__float2half_rn
(
1.0
f
);
const
half
y16
=
__float2half_rn
(
1.0
f
/
16.0
f
);
y1y16
[
0
]
=
__hmul2
(
scale2
,
__half2half2
(
y1
));
y1y16
[
1
]
=
__hmul2
(
scale2
,
__half2half2
(
y16
));
}
__forceinline__
__device__
void
dequant_4bit_8_prep_zero
(
const
uint32_t
zero
,
half2
(
&
z1z16
)[
2
],
half2
(
&
y1y16
)[
2
]
)
{
half_uint16
z1
(
0xe400
|
zero
);
// half(-1024.0f - zero);
half
z16
=
__hsub
(
__int2half_rn
(
-
64
),
__int2half_rn
(
zero
));
z1z16
[
0
]
=
__half2half2
(
z1
.
as_half
);
z1z16
[
1
]
=
__half2half2
(
z16
);
const
half
y1
=
__float2half_rn
(
1.0
f
);
const
half
y16
=
__float2half_rn
(
1.0
f
/
16.0
f
);
y1y16
[
0
]
=
__half2half2
(
y1
);
y1y16
[
1
]
=
__half2half2
(
y16
);
}
__forceinline__
__device__
void
dequant_4bit_8_gptq
(
const
uint32_t
q_0
,
half2
(
&
dq
)[
4
],
half2
(
&
z1z16
)[
2
],
half2
(
&
y1y16
)[
2
],
int
stride
,
bool
scaled
)
{
const
uint32_t
c0
=
0x64006400
;
uint32_t
qa
=
q_0
;
half2_uint32
q0
((
qa
&
0x000f000f
)
|
c0
);
// half2( q[0] + 1024, q[1] + 1024 )
half2_uint32
q1
((
qa
&
0x00f000f0
)
|
c0
);
// half2( q[2] * 16 + 1024, q[3] * 16 + 1024 )
qa
>>=
8
;
half2_uint32
q2
((
qa
&
0x000f000f
)
|
c0
);
// half2( q[4] + 1024, q[5] + 1024 )
half2_uint32
q3
((
qa
&
0x00f000f0
)
|
c0
);
// half2( q[6] * 16 + 1024, q[7] * 16 + 1024 )
if
(
scaled
)
{
dq
[
0
]
=
__hfma2
(
q0
.
as_half2
,
y1y16
[
0
],
z1z16
[
0
]);
// half2( q[0] * s - z * s, q[1] * s - z * s)
dq
[
1
]
=
__hfma2
(
q1
.
as_half2
,
y1y16
[
1
],
z1z16
[
1
]);
// half2( q[2] * s - z * s, q[3] * s - z * s)
dq
[
2
]
=
__hfma2
(
q2
.
as_half2
,
y1y16
[
0
],
z1z16
[
0
]);
dq
[
3
]
=
__hfma2
(
q3
.
as_half2
,
y1y16
[
1
],
z1z16
[
1
]);
}
else
{
dq
[
0
]
=
__hadd2
(
q0
.
as_half2
,
z1z16
[
0
]);
// half2( q[0] - z, q[1] - z )
dq
[
1
]
=
__hfma2
(
q1
.
as_half2
,
y1y16
[
1
],
z1z16
[
1
]);
// half2( q[2] - z, q[3] - z )
dq
[
2
]
=
__hadd2
(
q2
.
as_half2
,
z1z16
[
0
]);
// half2( q[4] - z, q[5] - z )
dq
[
3
]
=
__hfma2
(
q3
.
as_half2
,
y1y16
[
1
],
z1z16
[
1
]);
// half2( q[6] - z, q[7] - z )
}
}
#else
__forceinline__
__device__
void
shuffle_4bit_8
(
uint32_t
*
q
,
int
stride
)
{
}
__forceinline__
__device__
void
dequant_4bit_8
(
const
uint32_t
q_0
,
half2
(
&
dq
)[
4
],
int
stride
)
{
half
dqh
[
8
];
for
(
int
i
=
0
;
i
<
8
;
i
++
)
dqh
[
i
]
=
dq_ns
(
exb
(
q_0
,
i
*
4
,
0x0f
),
8
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
dq
[
i
]
=
__halves2half2
(
dqh
[
i
*
2
],
dqh
[
i
*
2
+
1
]);
}
__forceinline__
__device__
void
dequant_4bit_8_prep_zero_scale
(
const
uint32_t
zero
,
const
half
scale
,
half2
(
&
z1
)[
2
],
half2
(
&
y1
)[
2
]
)
{
half
z
=
__int2half_rn
(
-
((
int
)
zero
));
z
=
__hmul
(
z
,
scale
);
z1
[
0
]
=
__half2half2
(
z
);
y1
[
0
]
=
__half2half2
(
scale
);
}
__forceinline__
__device__
void
dequant_4bit_8_prep_zero
(
const
uint32_t
zero
,
half2
(
&
z1
)[
2
],
half2
(
&
y1
)[
2
]
)
{
half
z
=
__int2half_rn
(
-
((
int
)
zero
));
z1
[
0
]
=
__half2half2
(
z
);
}
__forceinline__
__device__
void
dequant_4bit_8_gptq
(
const
uint32_t
q_0
,
half2
(
&
dq
)[
4
],
half2
(
&
z1
)[
2
],
half2
(
&
y1
)[
2
],
int
stride
,
bool
scaled
)
{
half2
dqh2
[
8
];
uint32_t
qa
=
q_0
;
for
(
int
i
=
0
;
i
<
4
;
i
++
)
{
half
d0
=
__int2half_rn
(
qa
&
0x0f
);
qa
>>=
4
;
half
d1
=
__int2half_rn
(
qa
&
0x0f
);
qa
>>=
4
;
dqh2
[
i
]
=
__halves2half2
(
d0
,
d1
);
}
if
(
scaled
)
{
dq
[
0
]
=
__hfma2
(
dqh2
[
0
],
y1
[
0
],
z1
[
0
]);
dq
[
1
]
=
__hfma2
(
dqh2
[
1
],
y1
[
0
],
z1
[
0
]);
dq
[
2
]
=
__hfma2
(
dqh2
[
2
],
y1
[
0
],
z1
[
0
]);
dq
[
3
]
=
__hfma2
(
dqh2
[
3
],
y1
[
0
],
z1
[
0
]);
}
else
{
dq
[
0
]
=
__hadd2
(
dqh2
[
0
],
z1
[
0
]);
dq
[
1
]
=
__hadd2
(
dqh2
[
1
],
z1
[
0
]);
dq
[
2
]
=
__hadd2
(
dqh2
[
2
],
z1
[
0
]);
dq
[
3
]
=
__hadd2
(
dqh2
[
3
],
z1
[
0
]);
}
}
#endif
#endif
\ No newline at end of file
awq_ext/exllamav2/cuda/quant/qdq_5.cuh
0 → 100644
View file @
fc700a82
#ifndef _qdq_5_cuh
#define _qdq_5_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_5BIT == 1
// Permutation:
//
// v5555533 33311111 u4444422 22200000 (u, v lsb)
// vbbbbb99 99977777 uaaaaa88 88866666
// vhhhhhff fffddddd ugggggee eeeccccc
// vnnnnnll llljjjjj ummmmmkk kkkiiiii
// vtttttrr rrrppppp usssssqq qqqooooo
__forceinline__
__device__
void
shuffle_5bit_32
(
uint32_t
*
q
,
int
stride
)
{
uint32_t
qa
=
q
[
0
*
stride
];
uint32_t
qb
=
q
[
1
*
stride
];
uint32_t
qc
=
q
[
2
*
stride
];
uint32_t
qd
=
q
[
3
*
stride
];
uint32_t
qe
=
q
[
4
*
stride
];
// qa: 66555554 44443333 32222211 11100000
// qb: ccccbbbb baaaaa99 99988888 77777666
// qc: jiiiiihh hhhggggg fffffeee eedddddc
// qd: pppooooo nnnnnmmm mmlllllk kkkkjjjj
// qe: vvvvvuuu uuttttts ssssrrrr rqqqqqpp
uint32_t
qf
=
qe
>>
22
;
qe
<<=
8
;
qe
|=
qd
>>
24
;
qd
<<=
6
;
qd
|=
qc
>>
26
;
qc
<<=
4
;
qc
|=
qb
>>
28
;
qb
<<=
2
;
qb
|=
qa
>>
30
;
// qa: 555554 44443333 32222211 11100000
// qb: bbbbba aaaa9999 98888877 77766666
// qc: hhhhhg ggggffff feeeeedd dddccccc
// qd: nnnnnm mmmmllll lkkkkkjj jjjiiiii
// qe: ttttts ssssrrrr rqqqqqpp pppooooo
// qf: vv vvvuuuuu
uint32_t
za
=
0
;
uint32_t
zb
=
0
;
uint32_t
zc
=
0
;
uint32_t
zd
=
0
;
uint32_t
ze
=
0
;
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
uint32_t
t0
=
qa
&
0x1f
;
uint32_t
t1
=
(
qa
&
0x3e0
)
>>
5
;
qa
>>=
10
;
za
|=
(
t0
<<
(
i
*
5
));
za
|=
(
t1
<<
(
i
*
5
+
16
));
}
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
uint32_t
t0
=
qb
&
0x1f
;
uint32_t
t1
=
(
qb
&
0x3e0
)
>>
5
;
qb
>>=
10
;
zb
|=
(
t0
<<
(
i
*
5
));
zb
|=
(
t1
<<
(
i
*
5
+
16
));
}
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
uint32_t
t0
=
qc
&
0x1f
;
uint32_t
t1
=
(
qc
&
0x3e0
)
>>
5
;
qc
>>=
10
;
zc
|=
(
t0
<<
(
i
*
5
));
zc
|=
(
t1
<<
(
i
*
5
+
16
));
}
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
uint32_t
t0
=
qd
&
0x1f
;
uint32_t
t1
=
(
qd
&
0x3e0
)
>>
5
;
qd
>>=
10
;
zd
|=
(
t0
<<
(
i
*
5
));
zd
|=
(
t1
<<
(
i
*
5
+
16
));
}
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
uint32_t
t0
=
qe
&
0x1f
;
uint32_t
t1
=
(
qe
&
0x3e0
)
>>
5
;
qe
>>=
10
;
ze
|=
(
t0
<<
(
i
*
5
));
ze
|=
(
t1
<<
(
i
*
5
+
16
));
}
// za: 5555533 33311111 4444422 22200000
// zb: bbbbb99 99977777 aaaaa88 88866666
// zc: hhhhhff fffddddd gggggee eeeccccc
// zd: nnnnnll llljjjjj mmmmmkk kkkiiiii
// ze: tttttrr rrrppppp sssssqq qqqooooo
// qf: vv vvvuuuuu
za
|=
((
qf
&
0x001
)
>>
0
)
<<
15
;
zb
|=
((
qf
&
0x002
)
>>
1
)
<<
15
;
zc
|=
((
qf
&
0x004
)
>>
2
)
<<
15
;
zd
|=
((
qf
&
0x008
)
>>
3
)
<<
15
;
ze
|=
((
qf
&
0x010
)
>>
4
)
<<
15
;
za
|=
((
qf
&
0x020
)
>>
5
)
<<
31
;
zb
|=
((
qf
&
0x040
)
>>
6
)
<<
31
;
zc
|=
((
qf
&
0x080
)
>>
7
)
<<
31
;
zd
|=
((
qf
&
0x100
)
>>
8
)
<<
31
;
ze
|=
((
qf
&
0x200
)
>>
9
)
<<
31
;
// za: v5555533 33311111 u4444422 22200000 (u, v lsb)
// zb: vbbbbb99 99977777 uaaaaa88 88866666
// zc: vhhhhhff fffddddd ugggggee eeeccccc
// zd: vnnnnnll llljjjjj ummmmmkk kkkiiiii
// ze: vtttttrr rrrppppp usssssqq qqqooooo
q
[
0
*
stride
]
=
za
;
q
[
1
*
stride
]
=
zb
;
q
[
2
*
stride
]
=
zc
;
q
[
3
*
stride
]
=
zd
;
q
[
4
*
stride
]
=
ze
;
}
__forceinline__
__device__
void
dequant_5bit_32
(
const
uint32_t
q_0
,
const
uint32_t
q_1
,
const
uint32_t
q_2
,
const
uint32_t
q_3
,
const
uint32_t
q_4
,
half2
(
&
dq
)[
16
],
int
stride
)
{
const
uint32_t
c0
=
0x64006400
;
const
half
y32_
=
__float2half_rn
(
1.0
f
/
32.0
f
);
const
half2
y32
=
__halves2half2
(
y32_
,
y32_
);
const
half
z1_
=
__float2half_rn
(
-
1024.0
f
-
16.0
f
);
const
half
z32_
=
__float2half_rn
(
-
1024.0
f
/
32.0
f
-
16.0
f
);
const
half2
z1
=
__halves2half2
(
z1_
,
z1_
);
const
half2
z32
=
__halves2half2
(
z32_
,
z32_
);
uint32_t
qa
=
q_0
;
uint32_t
qb
=
q_1
;
uint32_t
qc
=
q_2
;
uint32_t
qd
=
q_3
;
uint32_t
qe
=
q_4
;
half2_uint32
q0
((
qa
&
0x001f001f
)
|
c0
);
// half2(q[ 0], q[ 1]) + 1024
half2_uint32
q1
((
qa
&
0x03e003e0
)
|
c0
);
// half2(q[ 2], q[ 3]) * 32 + 1024
qa
>>=
10
;
half2_uint32
q2
((
qa
&
0x001f001f
)
|
c0
);
// half2(q[ 4], q[ 5]) + 1024
qa
>>=
5
;
qa
&=
0x00010001
;
half2_uint32
q3
((
qb
&
0x001f001f
)
|
c0
);
// half2(q[ 6], q[ 7]) + 1024
half2_uint32
q4
((
qb
&
0x03e003e0
)
|
c0
);
// half2(q[ 8], q[ 9]) * 32 + 1024
qb
>>=
10
;
half2_uint32
q5
((
qb
&
0x001f001f
)
|
c0
);
// half2(q[10], q[11]) + 1024
qb
>>=
4
;
qb
&=
0x00020002
;
half2_uint32
q6
((
qc
&
0x001f001f
)
|
c0
);
// half2(q[12], q[13]) + 1024
half2_uint32
q7
((
qc
&
0x03e003e0
)
|
c0
);
// half2(q[14], q[15]) * 32 + 1024
qc
>>=
10
;
half2_uint32
q8
((
qc
&
0x001f001f
)
|
c0
);
// half2(q[16], q[17]) + 1024
qc
>>=
3
;
qc
&=
0x00040004
;
half2_uint32
q9
((
qd
&
0x001f001f
)
|
c0
);
// half2(q[18], q[19]) + 1024
half2_uint32
q10
((
qd
&
0x03e003e0
)
|
c0
);
// half2(q[20], q[21]) * 32 + 1024
qd
>>=
10
;
half2_uint32
q11
((
qd
&
0x001f001f
)
|
c0
);
// half2(q[22], q[23]) + 1024
qd
>>=
2
;
qd
&=
0x00080008
;
half2_uint32
q12
((
qe
&
0x001f001f
)
|
c0
);
// half2(q[24], q[25]) + 1024
half2_uint32
q13
((
qe
&
0x03e003e0
)
|
c0
);
// half2(q[26], q[27]) * 32 + 1024
qe
>>=
10
;
half2_uint32
q14
((
qe
&
0x001f001f
)
|
c0
);
// half2(q[28], q[29]) + 1024
qe
>>=
1
;
qe
&=
0x00100010
;
half2_uint32
q15
((
qa
|
qb
|
qc
|
qd
|
qe
)
|
c0
);
dq
[
0
]
=
__hadd2
(
q0
.
as_half2
,
z1
);
dq
[
1
]
=
__hfma2
(
q1
.
as_half2
,
y32
,
z32
);
dq
[
2
]
=
__hadd2
(
q2
.
as_half2
,
z1
);
dq
[
3
]
=
__hadd2
(
q3
.
as_half2
,
z1
);
dq
[
4
]
=
__hfma2
(
q4
.
as_half2
,
y32
,
z32
);
dq
[
5
]
=
__hadd2
(
q5
.
as_half2
,
z1
);
dq
[
6
]
=
__hadd2
(
q6
.
as_half2
,
z1
);
dq
[
7
]
=
__hfma2
(
q7
.
as_half2
,
y32
,
z32
);
dq
[
8
]
=
__hadd2
(
q8
.
as_half2
,
z1
);
dq
[
9
]
=
__hadd2
(
q9
.
as_half2
,
z1
);
dq
[
10
]
=
__hfma2
(
q10
.
as_half2
,
y32
,
z32
);
dq
[
11
]
=
__hadd2
(
q11
.
as_half2
,
z1
);
dq
[
12
]
=
__hadd2
(
q12
.
as_half2
,
z1
);
dq
[
13
]
=
__hfma2
(
q13
.
as_half2
,
y32
,
z32
);
dq
[
14
]
=
__hadd2
(
q14
.
as_half2
,
z1
);
dq
[
15
]
=
__hadd2
(
q15
.
as_half2
,
z1
);
}
#else
__forceinline__
__device__
void
shuffle_5bit_32
(
uint32_t
*
q
,
int
stride
)
{
}
__forceinline__
__device__
void
dequant_5bit_32
(
const
uint32_t
q_0
,
const
uint32_t
q_1
,
const
uint32_t
q_2
,
const
uint32_t
q_3
,
const
uint32_t
q_4
,
half2
(
&
dq
)[
16
],
int
stride
)
{
half
dqh
[
32
];
for
(
int
i
=
0
;
i
<
6
;
i
++
)
dqh
[
i
]
=
dq_ns
(
exb
(
q_0
,
i
*
5
,
0x1f
),
16
);
dqh
[
6
]
=
dq_ns
(
exb
(
q_1
,
q_0
,
30
,
0x1f
),
16
);
for
(
int
i
=
0
;
i
<
5
;
i
++
)
dqh
[
7
+
i
]
=
dq_ns
(
exb
(
q_1
,
i
*
5
+
3
,
0x1f
),
16
);
dqh
[
12
]
=
dq_ns
(
exb
(
q_2
,
q_1
,
28
,
0x1f
),
16
);
for
(
int
i
=
0
;
i
<
6
;
i
++
)
dqh
[
13
+
i
]
=
dq_ns
(
exb
(
q_2
,
i
*
5
+
1
,
0x1f
),
16
);
dqh
[
19
]
=
dq_ns
(
exb
(
q_3
,
q_2
,
31
,
0x1f
),
16
);
for
(
int
i
=
0
;
i
<
5
;
i
++
)
dqh
[
20
+
i
]
=
dq_ns
(
exb
(
q_3
,
i
*
5
+
4
,
0x1f
),
16
);
dqh
[
25
]
=
dq_ns
(
exb
(
q_4
,
q_3
,
29
,
0x1f
),
16
);
for
(
int
i
=
0
;
i
<
6
;
i
++
)
dqh
[
26
+
i
]
=
dq_ns
(
exb
(
q_4
,
i
*
5
+
2
,
0x1f
),
16
);
for
(
int
i
=
0
;
i
<
16
;
i
++
)
dq
[
i
]
=
__halves2half2
(
dqh
[
i
*
2
],
dqh
[
i
*
2
+
1
]);
}
#endif
#endif
\ No newline at end of file
awq_ext/exllamav2/cuda/quant/qdq_6.cuh
0 → 100644
View file @
fc700a82
#ifndef _qdq_6_cuh
#define _qdq_6_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_6BIT == 1
// Not implemented
#else
__forceinline__
__device__
void
shuffle_6bit_16
(
uint32_t
*
q
,
int
stride
)
{
}
__forceinline__
__device__
void
dequant_6bit_16
(
const
uint32_t
q_0
,
const
uint32_t
q_1
,
const
uint32_t
q_2
,
half2
(
&
dq
)[
8
],
int
stride
)
{
half
dqh
[
16
];
for
(
int
i
=
0
;
i
<
5
;
i
++
)
dqh
[
i
]
=
dq_ns
(
exb
(
q_0
,
i
*
6
,
0x3f
),
32
);
dqh
[
5
]
=
dq_ns
(
exb
(
q_1
,
q_0
,
30
,
0x3f
),
32
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
dqh
[
6
+
i
]
=
dq_ns
(
exb
(
q_1
,
i
*
6
+
4
,
0x3f
),
32
);
dqh
[
10
]
=
dq_ns
(
exb
(
q_2
,
q_1
,
28
,
0x3f
),
32
);
for
(
int
i
=
0
;
i
<
5
;
i
++
)
dqh
[
11
+
i
]
=
dq_ns
(
exb
(
q_2
,
i
*
6
+
2
,
0x3f
),
32
);
for
(
int
i
=
0
;
i
<
8
;
i
++
)
dq
[
i
]
=
__halves2half2
(
dqh
[
i
*
2
],
dqh
[
i
*
2
+
1
]);
}
#endif
#endif
awq_ext/exllamav2/cuda/quant/qdq_8.cuh
0 → 100644
View file @
fc700a82
#ifndef _qdq_8_cuh
#define _qdq_8_cuh
#include "qdq_util.cuh"
#include "../../config.h"
#if QMODE_8BIT == 1
// Not implemented
#else
__forceinline__
__device__
void
shuffle_8bit_4
(
uint32_t
*
q
,
int
stride
)
{
}
__forceinline__
__device__
void
dequant_8bit_8
(
const
uint32_t
q_0
,
const
uint32_t
q_1
,
half2
(
&
dq
)[
4
],
int
stride
)
{
half
dqh
[
8
];
for
(
int
i
=
0
;
i
<
4
;
i
++
)
dqh
[
i
]
=
dq_ns
(
exb
(
q_0
,
i
*
8
,
0xff
),
128
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
dqh
[
i
+
4
]
=
dq_ns
(
exb
(
q_1
,
i
*
8
,
0xff
),
128
);
for
(
int
i
=
0
;
i
<
4
;
i
++
)
dq
[
i
]
=
__halves2half2
(
dqh
[
i
*
2
],
dqh
[
i
*
2
+
1
]);
}
#endif
#endif
\ No newline at end of file
awq_ext/exllamav2/cuda/quant/qdq_util.cuh
0 → 100644
View file @
fc700a82
#ifndef _qdq_util_cuh
#define _qdq_util_cuh
union
half2_uint32
{
uint32_t
as_uint32
;
half2
as_half2
;
__device__
half2_uint32
(
uint32_t
val
)
:
as_uint32
(
val
)
{}
__device__
half2_uint32
(
half2
val
)
:
as_half2
(
val
)
{}
};
union
half_uint16
{
uint16_t
as_uint16
;
half
as_half
;
__device__
half_uint16
(
uint16_t
val
)
:
as_uint16
(
val
)
{}
__device__
half_uint16
(
half
val
)
:
as_half
(
val
)
{}
};
// Max_scale premultiplied by 1/256
__forceinline__
__device__
half
dq_scale
(
const
int
qs
,
const
half
max_scale
)
{
int
qs_i
=
qs
+
1
;
half
qs_h
=
__int2half_rn
(
qs_i
*
qs_i
);
qs_h
=
__hmul
(
qs_h
,
max_scale
);
return
qs_h
;
}
__forceinline__
__device__
half
dq
(
const
int
q
,
const
int
qzero
,
const
half
scale
)
{
return
__hmul
(
__int2half_rn
(
q
-
qzero
),
scale
);
}
__forceinline__
__device__
half
dq_ns
(
const
int
q
,
const
int
qzero
)
{
//return __hsub(__int2half_rn(q), __int2half_rn(qzero));
return
__int2half_rn
(
q
-
qzero
);
}
__forceinline__
__device__
int
exb
(
const
uint32_t
q
,
const
int
shift
,
const
int
mask
)
{
return
(
int
)((
q
>>
shift
)
&
mask
);
}
__forceinline__
__device__
int
exb
(
const
uint32_t
q1
,
const
uint32_t
q0
,
const
int
shift
,
const
int
mask
)
{
return
(
int
)(
__funnelshift_rc
(
q0
,
q1
,
shift
)
&
mask
);
}
#endif
awq_ext/exllamav2/cuda/util.cuh
0 → 100644
View file @
fc700a82
#define DIVIDE(x, size) (((x) + (size) - 1) / (size))
#define DBGS(__x) printf("%s\n", __x)
#define DBGI(__x) printf("%s: %i\n", #__x, __x)
#define DBGI2(__x, __y) printf("%s, %s: %i, %i\n", #__x, #__y, __x, __y)
#define DBGI3(__x, __y, __z) printf("%s, %s, %s: %i, %i, %i\n", #__x, #__y, #__z, __x, __y, __z)
#define DBGX(__x) printf("%s: %x\n", #__x, __x)
#define DBGX2(__x, __y) printf("%s, %s: %x, %x\n", #__x, #__y, __x, __y)
#define DBGX3(__x, __y, __z) printf("%s, %s, %s: %x, %x, %x\n", #__x, #__y, #__z, __x, __y, __z)
#define DBGF(__x) printf("%s: %f\n", #__x, __x)
#define DBGF2(__x, __y) printf("%s, %s: %f, %f\n", #__x, #__y, __x, __y)
#define DBGF3(__x, __y, __z) printf("%s, %s, %s: %f, %f, %f\n", #__x, #__y, #__z, __x, __y, __z)
#define DBGH(__x) printf("%s: %f\n", #__x, __half2float(__x))
#define DBGH2(__x, __y) printf("%s, %s: %f, %f\n", #__x, #__y, __half2float(__x), __half2float(__y))
#define DBGH3(__x, __y, __z) printf("%s, %s, %s: %f, %f, %f\n", #__x, #__y, #__z, __half2float(__x), __half2float(__y), __half2float(__z))
#define DBGIH(__x, __y) printf("%s, %s: %i, %f\n", #__x, #__y, __x, __half2float(__y))
#define DBGIH2(__x, __y, __z) printf("%s, %s, %s: %i, %f, %f\n", #__x, #__y, #__z, __x, __half2float(__y), __half2float(__z))
__forceinline__
__device__
half
dq_scale_
(
const
int
qs
,
const
half
max_scale
)
{
half
qs_h
=
__hmul
(
__int2half_rn
(
qs
+
1
),
__float2half_rn
(
1.0
f
/
16.0
f
));
qs_h
=
__hmul
(
qs_h
,
qs_h
);
qs_h
=
__hmul
(
qs_h
,
max_scale
);
return
qs_h
;
}
__forceinline__
__device__
float
clamp
(
float
x
,
float
a
,
float
b
)
{
return
fmaxf
(
a
,
fminf
(
b
,
x
));
}
#define cuda_check(ans) { gpu_assert((ans), __FILE__, __LINE__); }
inline
void
gpu_assert
(
cudaError_t
code
,
const
char
*
file
,
int
line
,
bool
abort
=
true
)
{
if
(
code
!=
cudaSuccess
)
{
fprintf
(
stderr
,
"CUDA error: %s %s %d
\n
"
,
cudaGetErrorString
(
code
),
file
,
line
);
if
(
abort
)
exit
(
code
);
}
}
awq_ext/exllamav2/ext.cpp
0 → 100644
View file @
fc700a82
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cstdint>
#include <cstdio>
#include "config.h"
#include "cuda/q_matrix.cuh"
#include "cuda/q_gemm.cuh"
#include "cpp/util.h"
// Some decluttering macros
#define TORCH_CHECK_DTYPE(__x, __dtype) TORCH_CHECK((__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype)
#define TORCH_CHECK_DTYPE_OPT(__x, __dtype) TORCH_CHECK((__x).device().is_meta() || (__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype)
#define TORCH_CHECK_SHAPES(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes")
#define TORCH_CHECK_SHAPES_OPT(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).device().is_meta() || (__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes")
// Quant matrix
uintptr_t
make_q_matrix
(
torch
::
Tensor
q_weight
,
torch
::
Tensor
q_perm
,
torch
::
Tensor
q_invperm
,
torch
::
Tensor
q_scale
,
torch
::
Tensor
q_scale_max
,
torch
::
Tensor
q_groups
,
torch
::
Tensor
gptq_qzeros
,
torch
::
Tensor
gptq_scales
,
torch
::
Tensor
gptq_g_idx
,
torch
::
Tensor
temp_dq
)
{
TORCH_CHECK_DTYPE
(
q_weight
,
kInt
);
TORCH_CHECK_DTYPE_OPT
(
q_perm
,
kShort
);
TORCH_CHECK_DTYPE_OPT
(
q_invperm
,
kShort
);
TORCH_CHECK_DTYPE_OPT
(
q_scale
,
kInt
);
TORCH_CHECK_DTYPE_OPT
(
q_scale_max
,
kHalf
);
TORCH_CHECK_DTYPE_OPT
(
q_groups
,
kShort
);
TORCH_CHECK_DTYPE_OPT
(
gptq_qzeros
,
kInt
);
TORCH_CHECK_DTYPE_OPT
(
gptq_scales
,
kHalf
);
TORCH_CHECK_DTYPE_OPT
(
gptq_g_idx
,
kInt
);
TORCH_CHECK_SHAPES
(
q_perm
,
0
,
q_invperm
,
0
,
1
);
int
device
=
q_weight
.
device
().
index
();
int
width
=
q_weight
.
size
(
1
);
int
groups
;
int
height
;
if
(
!
q_scale
.
device
().
is_meta
())
{
TORCH_CHECK_SHAPES
(
q_weight
,
1
,
q_scale
,
1
,
8
);
TORCH_CHECK_SHAPES
(
q_scale_max
,
0
,
q_scale
,
0
,
1
);
groups
=
q_scale
.
size
(
0
);
height
=
q_invperm
.
size
(
0
);
}
else
{
TORCH_CHECK_SHAPES
(
q_weight
,
1
,
gptq_qzeros
,
1
,
8
);
TORCH_CHECK_SHAPES
(
q_weight
,
1
,
gptq_scales
,
1
,
1
);
groups
=
gptq_qzeros
.
size
(
0
);
height
=
q_weight
.
size
(
0
)
*
8
;
}
TORCH_CHECK
(
temp_dq
.
size
(
0
)
>=
width
*
height
,
"Insufficient size of temp_dq buffer"
)
QMatrix
*
m
=
new
QMatrix
(
device
,
height
,
width
,
groups
,
(
uint32_t
*
)
q_weight
.
data_ptr
(),
q_perm
.
device
().
is_meta
()
?
NULL
:
(
uint16_t
*
)
q_perm
.
data_ptr
(),
q_invperm
.
device
().
is_meta
()
?
NULL
:
(
uint16_t
*
)
q_invperm
.
data_ptr
(),
q_scale
.
device
().
is_meta
()
?
NULL
:
(
uint32_t
*
)
q_scale
.
data_ptr
(),
q_scale_max
.
device
().
is_meta
()
?
NULL
:
(
half
*
)
q_scale_max
.
data_ptr
(),
q_groups
.
device
().
is_meta
()
?
NULL
:
(
uint16_t
*
)
q_groups
.
data_ptr
(),
gptq_qzeros
.
device
().
is_meta
()
?
NULL
:
(
uint32_t
*
)
gptq_qzeros
.
data_ptr
(),
gptq_scales
.
device
().
is_meta
()
?
NULL
:
(
half
*
)
gptq_scales
.
data_ptr
(),
gptq_g_idx
.
device
().
is_meta
()
?
NULL
:
(
uint32_t
*
)
gptq_g_idx
.
data_ptr
(),
(
half
*
)
temp_dq
.
data_ptr
()
);
return
reinterpret_cast
<
uintptr_t
>
(
m
);
}
void
gemm_half_q_half
(
torch
::
Tensor
a
,
uintptr_t
b
,
torch
::
Tensor
c
,
bool
force_cuda
)
{
QMatrix
*
qm
=
reinterpret_cast
<
QMatrix
*>
(
b
);
TORCH_CHECK_DTYPE
(
a
,
kHalf
);
TORCH_CHECK_DTYPE
(
c
,
kHalf
);
TORCH_CHECK_SHAPES
(
a
,
0
,
c
,
0
,
1
);
TORCH_CHECK
(
qm
->
height
==
a
.
size
(
1
),
"a and b have incompatible shapes"
)
TORCH_CHECK
(
qm
->
width
==
c
.
size
(
1
),
"b and c have incompatible shapes"
)
const
at
::
cuda
::
OptionalCUDAGuard
device_guard
(
device_of
(
a
));
gemm_half_q_half_cuda
(
at
::
cuda
::
getCurrentCUDABlasHandle
(),
(
const
half
*
)
a
.
data_ptr
(),
qm
,
(
half
*
)
c
.
data_ptr
(),
c
.
size
(
0
),
// m
c
.
size
(
1
),
// n
a
.
size
(
1
),
// k
true
,
NULL
,
force_cuda
);
}
// Bindings
PYBIND11_MODULE
(
TORCH_EXTENSION_NAME
,
m
)
{
m
.
def
(
"make_q_matrix"
,
&
make_q_matrix
,
"make_q_matrix"
);
m
.
def
(
"gemm_half_q_half"
,
&
gemm_half_q_half
,
"gemm_half_q_half"
);
}
setup.py
View file @
fc700a82
...
@@ -12,7 +12,9 @@ PYPI_BUILD = os.getenv("PYPI_BUILD", "0") == "1"
...
@@ -12,7 +12,9 @@ PYPI_BUILD = os.getenv("PYPI_BUILD", "0") == "1"
if
not
PYPI_BUILD
:
if
not
PYPI_BUILD
:
try
:
try
:
CUDA_VERSION
=
""
.
join
(
os
.
environ
.
get
(
"CUDA_VERSION"
,
torch
.
version
.
cuda
).
split
(
"."
))[:
3
]
CUDA_VERSION
=
""
.
join
(
os
.
environ
.
get
(
"CUDA_VERSION"
,
torch
.
version
.
cuda
).
split
(
"."
)
)[:
3
]
AUTOAWQ_KERNELS_VERSION
+=
f
"+cu
{
CUDA_VERSION
}
"
AUTOAWQ_KERNELS_VERSION
+=
f
"+cu
{
CUDA_VERSION
}
"
except
Exception
as
ex
:
except
Exception
as
ex
:
raise
RuntimeError
(
"Your system must have an Nvidia GPU for installing AutoAWQ"
)
raise
RuntimeError
(
"Your system must have an Nvidia GPU for installing AutoAWQ"
)
...
@@ -24,7 +26,9 @@ common_setup_kwargs = {
...
@@ -24,7 +26,9 @@ common_setup_kwargs = {
"license"
:
"MIT"
,
"license"
:
"MIT"
,
"python_requires"
:
">=3.8.0"
,
"python_requires"
:
">=3.8.0"
,
"description"
:
"AutoAWQ Kernels implements the AWQ kernels."
,
"description"
:
"AutoAWQ Kernels implements the AWQ kernels."
,
"long_description"
:
(
Path
(
__file__
).
parent
/
"README.md"
).
read_text
(
encoding
=
"UTF-8"
),
"long_description"
:
(
Path
(
__file__
).
parent
/
"README.md"
).
read_text
(
encoding
=
"UTF-8"
),
"long_description_content_type"
:
"text/markdown"
,
"long_description_content_type"
:
"text/markdown"
,
"url"
:
"https://github.com/casper-hansen/AutoAWQ_kernels"
,
"url"
:
"https://github.com/casper-hansen/AutoAWQ_kernels"
,
"keywords"
:
[
"awq"
,
"autoawq"
,
"quantization"
,
"transformers"
],
"keywords"
:
[
"awq"
,
"autoawq"
,
"quantization"
,
"transformers"
],
...
@@ -39,17 +43,20 @@ common_setup_kwargs = {
...
@@ -39,17 +43,20 @@ common_setup_kwargs = {
"Programming Language :: Python :: 3.10"
,
"Programming Language :: Python :: 3.10"
,
"Programming Language :: Python :: 3.11"
,
"Programming Language :: Python :: 3.11"
,
"Programming Language :: C++"
,
"Programming Language :: C++"
,
]
]
,
}
}
requirements
=
[
requirements
=
[
"torch>=2.0.1"
,
"torch>=2.0.1"
,
]
]
def
get_include_dirs
():
def
get_include_dirs
():
include_dirs
=
[]
include_dirs
=
[]
conda_cuda_include_dir
=
os
.
path
.
join
(
get_python_lib
(),
"nvidia/cuda_runtime/include"
)
conda_cuda_include_dir
=
os
.
path
.
join
(
get_python_lib
(),
"nvidia/cuda_runtime/include"
)
if
os
.
path
.
isdir
(
conda_cuda_include_dir
):
if
os
.
path
.
isdir
(
conda_cuda_include_dir
):
include_dirs
.
append
(
conda_cuda_include_dir
)
include_dirs
.
append
(
conda_cuda_include_dir
)
this_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
this_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
...
@@ -57,18 +64,24 @@ def get_include_dirs():
...
@@ -57,18 +64,24 @@ def get_include_dirs():
return
include_dirs
return
include_dirs
def
get_generator_flag
():
def
get_generator_flag
():
generator_flag
=
[]
generator_flag
=
[]
torch_dir
=
torch
.
__path__
[
0
]
torch_dir
=
torch
.
__path__
[
0
]
if
os
.
path
.
exists
(
os
.
path
.
join
(
torch_dir
,
"include"
,
"ATen"
,
"CUDAGeneratorImpl.h"
)):
if
os
.
path
.
exists
(
os
.
path
.
join
(
torch_dir
,
"include"
,
"ATen"
,
"CUDAGeneratorImpl.h"
)
):
generator_flag
=
[
"-DOLD_GENERATOR_PATH"
]
generator_flag
=
[
"-DOLD_GENERATOR_PATH"
]
return
generator_flag
return
generator_flag
def
check_dependencies
():
def
check_dependencies
():
if
CUDA_HOME
is
None
:
if
CUDA_HOME
is
None
:
raise
RuntimeError
(
raise
RuntimeError
(
f
"Cannot find CUDA_HOME. CUDA must be available to build the package."
)
f
"Cannot find CUDA_HOME. CUDA must be available to build the package."
)
def
get_compute_capabilities
():
def
get_compute_capabilities
():
# Collect the compute capabilities of all available GPUs.
# Collect the compute capabilities of all available GPUs.
...
@@ -77,7 +90,9 @@ def get_compute_capabilities():
...
@@ -77,7 +90,9 @@ def get_compute_capabilities():
cc
=
major
*
10
+
minor
cc
=
major
*
10
+
minor
if
cc
<
75
:
if
cc
<
75
:
raise
RuntimeError
(
"GPUs with compute capability less than 7.5 are not supported."
)
raise
RuntimeError
(
"GPUs with compute capability less than 7.5 are not supported."
)
# figure out compute capability
# figure out compute capability
compute_capabilities
=
{
75
,
80
,
86
,
89
,
90
}
compute_capabilities
=
{
75
,
80
,
86
,
89
,
90
}
...
@@ -88,6 +103,7 @@ def get_compute_capabilities():
...
@@ -88,6 +103,7 @@ def get_compute_capabilities():
return
capability_flags
return
capability_flags
check_dependencies
()
check_dependencies
()
include_dirs
=
get_include_dirs
()
include_dirs
=
get_include_dirs
()
generator_flags
=
get_generator_flag
()
generator_flags
=
get_generator_flag
()
...
@@ -98,14 +114,14 @@ if os.name == "nt":
...
@@ -98,14 +114,14 @@ if os.name == "nt":
# Relaxed args on Windows
# Relaxed args on Windows
if
include_arch
:
if
include_arch
:
extra_compile_args
=
{
"nvcc"
:
arch_flags
}
extra_compile_args
=
{
"nvcc"
:
arch_flags
}
else
:
else
:
extra_compile_args
=
{}
extra_compile_args
=
{}
else
:
else
:
extra_compile_args
=
{
extra_compile_args
=
{
"cxx"
:
[
"-g"
,
"-O3"
,
"-fopenmp"
,
"-lgomp"
,
"-std=c++17"
,
"-DENABLE_BF16"
],
"cxx"
:
[
"-g"
,
"-O3"
,
"-fopenmp"
,
"-lgomp"
,
"-std=c++17"
,
"-DENABLE_BF16"
],
"nvcc"
:
[
"nvcc"
:
[
"-O3"
,
"-O3"
,
"-std=c++17"
,
"-std=c++17"
,
"-DENABLE_BF16"
,
"-DENABLE_BF16"
,
"-U__CUDA_NO_HALF_OPERATORS__"
,
"-U__CUDA_NO_HALF_OPERATORS__"
,
...
@@ -117,7 +133,9 @@ else:
...
@@ -117,7 +133,9 @@ else:
"--expt-relaxed-constexpr"
,
"--expt-relaxed-constexpr"
,
"--expt-extended-lambda"
,
"--expt-extended-lambda"
,
"--use_fast_math"
,
"--use_fast_math"
,
]
+
arch_flags
+
generator_flags
]
+
arch_flags
+
generator_flags
,
}
}
extensions
=
[
extensions
=
[
...
@@ -128,10 +146,36 @@ extensions = [
...
@@ -128,10 +146,36 @@ extensions = [
"awq_ext/quantization/gemm_cuda_gen.cu"
,
"awq_ext/quantization/gemm_cuda_gen.cu"
,
"awq_ext/layernorm/layernorm.cu"
,
"awq_ext/layernorm/layernorm.cu"
,
"awq_ext/position_embedding/pos_encoding_kernels.cu"
,
"awq_ext/position_embedding/pos_encoding_kernels.cu"
,
"awq_ext/quantization/gemv_cuda.cu"
"awq_ext/quantization/gemv_cuda.cu"
,
],
extra_compile_args
=
extra_compile_args
],
extra_compile_args
=
extra_compile_args
,
)
)
]
]
extensions
.
append
(
CUDAExtension
(
"exllama_kernels"
,
[
"awq_ext/exllama/exllama_ext.cpp"
,
"awq_ext/exllama/cuda_buffers.cu"
,
"awq_ext/exllama/cuda_func/column_remap.cu"
,
"awq_ext/exllama/cuda_func/q4_matmul.cu"
,
"awq_ext/exllama/cuda_func/q4_matrix.cu"
,
],
extra_compile_args
=
extra_compile_args
,
)
)
extensions
.
append
(
CUDAExtension
(
"exllamav2_kernels"
,
[
"awq_ext/exllamav2/ext.cpp"
,
"awq_ext/exllamav2/cuda/q_matrix.cu"
,
"awq_ext/exllamav2/cuda/q_gemm.cu"
,
],
extra_compile_args
=
extra_compile_args
,
)
)
if
os
.
name
!=
"nt"
:
if
os
.
name
!=
"nt"
:
extensions
.
append
(
extensions
.
append
(
...
@@ -140,14 +184,15 @@ if os.name != "nt":
...
@@ -140,14 +184,15 @@ if os.name != "nt":
[
[
"awq_ext/pybind_awq_ft.cpp"
,
"awq_ext/pybind_awq_ft.cpp"
,
"awq_ext/attention/ft_attention.cpp"
,
"awq_ext/attention/ft_attention.cpp"
,
"awq_ext/attention/decoder_masked_multihead_attention.cu"
"awq_ext/attention/decoder_masked_multihead_attention.cu"
,
],
extra_compile_args
=
extra_compile_args
],
extra_compile_args
=
extra_compile_args
,
)
)
)
)
additional_setup_kwargs
=
{
additional_setup_kwargs
=
{
"ext_modules"
:
extensions
,
"ext_modules"
:
extensions
,
"cmdclass"
:
{
'
build_ext
'
:
BuildExtension
}
"cmdclass"
:
{
"
build_ext
"
:
BuildExtension
}
,
}
}
common_setup_kwargs
.
update
(
additional_setup_kwargs
)
common_setup_kwargs
.
update
(
additional_setup_kwargs
)
...
@@ -156,5 +201,5 @@ setup(
...
@@ -156,5 +201,5 @@ setup(
packages
=
find_packages
(),
packages
=
find_packages
(),
install_requires
=
requirements
,
install_requires
=
requirements
,
include_dirs
=
include_dirs
,
include_dirs
=
include_dirs
,
**
common_setup_kwargs
**
common_setup_kwargs
,
)
)
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment