Unverified Commit fa584026 authored by Casper's avatar Casper Committed by GitHub
Browse files

MoE grouped gemm and fused topk_softmax (#8)

* Initial

* group gemm

* Fix install. Add topk_softmax kernels.
parent c4486784
......@@ -4,13 +4,20 @@
#include "quantization/gemm_cuda.h"
#include "quantization/gemv_cuda.h"
#include "position_embedding/pos_encoding.h"
#include "vllm/moe_alig_block.h"
#include "vllm/activation.h"
#include "vllm/topk_softmax_kernels.h"
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
{
m.def("layernorm_forward_cuda", &layernorm_forward_cuda, "FasterTransformer layernorm kernel");
m.def("gemm_forward_cuda", &gemm_forward_cuda, "Quantized GEMM kernel.");
m.def("grouped_gemm_forward", &grouped_gemm_forward, "Quantized grouped GEMM kernel.");
m.def("gemmv2_forward_cuda", &gemmv2_forward_cuda, "Quantized v2 GEMM kernel.");
m.def("gemv_forward_cuda", &gemv_forward_cuda, "Quantized GEMV kernel.");
m.def("rotary_embedding_neox", &rotary_embedding_neox, "Apply GPT-NeoX style rotary embedding to query and key");
m.def("dequantize_weights_cuda", &dequantize_weights_cuda, "Dequantize weights.");
m.def("moe_alig_block_size", &moe_alig_block_size, "Aligning the number of tokens to be processed by each expert such that it is divisible by the block size.");
m.def("silu_and_mul", &silu_and_mul, "Activation function used in SwiGLU.");
m.def("topk_softmax", &topk_softmax, "Computes fused topk and softmax operation.");
}
\ No newline at end of file
......@@ -3,6 +3,18 @@
torch::Tensor gemm_forward_cuda(torch::Tensor _in_feats, torch::Tensor _kernel,
torch::Tensor _scaling_factors, torch::Tensor _zeros, int split_k_iters);
torch::Tensor grouped_gemm_forward(
torch::Tensor _in_feats,
torch::Tensor _kernel,
torch::Tensor _scaling_factors,
torch::Tensor _zeros,
torch::Tensor _topk_weights,
torch::Tensor _sorted_token_ids_ptr,
torch::Tensor _expert_ids_ptr,
torch::Tensor _num_tokens_post_padded,
bool mul_weights,
int split_k_iters);
torch::Tensor gemmv2_forward_cuda(torch::Tensor _in_feats, torch::Tensor _kernel,
torch::Tensor _scaling_factors, torch::Tensor _zeros, int group_size, int split_k_iters);
......
This diff is collapsed.
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#define VLLM_LDG(arg) *(arg)
#define VLLM_DISPATCH_CASE_FLOATING_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__)
#define VLLM_DISPATCH_FLOATING_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_FLOATING_TYPES(__VA_ARGS__))
template<typename T>
__device__ __forceinline__ T silu(const T& x) {
// x * sigmoid(x)
return (T) (((float) x) / (1.0f + expf((float) -x)));
}
template<typename scalar_t>
__global__ void silu_and_mul_kernel(
scalar_t* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., 2, d]
const int d) {
const int64_t token_idx = blockIdx.x;
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&input[token_idx * 2 * d + idx]);
const scalar_t y = VLLM_LDG(&input[token_idx * 2 * d + d + idx]);
out[token_idx * d + idx] = silu(x) * y;
}
}
void silu_and_mul(
torch::Tensor& out, // [..., d]
torch::Tensor& input) // [..., 2 * d]
{
int64_t num_tokens = input.numel() / input.size(-1);
int d = input.size(-1) / 2;
dim3 grid(num_tokens);
dim3 block(std::min(d, 1024));
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(),
"silu_and_mul_kernel",
[&] {
silu_and_mul_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(),
input.data_ptr<scalar_t>(),
d);
});
}
\ No newline at end of file
void silu_and_mul(
torch::Tensor& out,
torch::Tensor& input);
\ No newline at end of file
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/ATen.h>
#include <THC/THCAtomics.cuh>
const static size_t NUM_MAX_EXPERTS = 64;
#define VLLM_DISPATCH_CASE_INTEGRAL_TYPES(...) \
AT_DISPATCH_CASE(at::ScalarType::Byte, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Char, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Short, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Int, __VA_ARGS__) \
AT_DISPATCH_CASE(at::ScalarType::Long, __VA_ARGS__)
#define VLLM_DISPATCH_INTEGRAL_TYPES(TYPE, NAME, ...) \
AT_DISPATCH_SWITCH( \
TYPE, NAME, VLLM_DISPATCH_CASE_INTEGRAL_TYPES(__VA_ARGS__))
template <typename scalar_t>
__global__ void moe_alig_block_size_kernel(scalar_t *__restrict__ topk_ids,
int32_t *sorted_token_ids,
int32_t *expert_ids,
int32_t *total_tokens_post_pad,
int32_t num_experts,
int32_t block_size,
size_t numel) {
const size_t tokens_per_thread = ((numel + blockDim.x - 1) / blockDim.x);
const size_t start_idx = threadIdx.x * tokens_per_thread;
__shared__ int32_t tokens_cnts[NUM_MAX_EXPERTS + 1][NUM_MAX_EXPERTS];
__shared__ int32_t cumsum[NUM_MAX_EXPERTS + 1];
for(int i = 0;i < num_experts;i++){
tokens_cnts[threadIdx.x + 1][i] = 0;
}
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
++tokens_cnts[threadIdx.x + 1][topk_ids[i]];
}
__syncthreads();
tokens_cnts[0][threadIdx.x] = 0;
for(int i=1;i<=blockDim.x;++i){
tokens_cnts[i][threadIdx.x] += tokens_cnts[i-1][threadIdx.x];
}
__syncthreads();
if(threadIdx.x ==0){
cumsum[0] = 0;
for(int i=1;i<=num_experts;++i){
cumsum[i] = cumsum[i-1] + (tokens_cnts[blockDim.x][i - 1] + block_size - 1) / block_size * block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
}
__syncthreads();
for(int i= cumsum[threadIdx.x];i<cumsum[threadIdx.x + 1];i += block_size){
expert_ids[i / block_size] = threadIdx.x;
}
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
int32_t expert_id = topk_ids[i];
int32_t rank_post_pad = tokens_cnts[threadIdx.x][expert_id] + cumsum[expert_id];
sorted_token_ids[rank_post_pad] = i;
++tokens_cnts[threadIdx.x][expert_id];
}
}
void moe_alig_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad) {
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
assert(num_experts <= NUM_MAX_EXPERTS);
VLLM_DISPATCH_INTEGRAL_TYPES(
topk_ids.scalar_type(), "moe_alig_block_size_kernel", [&] {
moe_alig_block_size_kernel<scalar_t><<<1, num_experts, 0, stream>>>(
topk_ids.data_ptr<scalar_t>(),
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(),
num_experts,
block_size,
topk_ids.numel());
});
}
\ No newline at end of file
void moe_alig_block_size(
torch::Tensor topk_ids,
int num_experts,
int block_size,
torch::Tensor sorted_token_ids,
torch::Tensor experts_ids,
torch::Tensor num_tokens_post_pad
);
\ No newline at end of file
This diff is collapsed.
#pragma once
#include <torch/extension.h>
void topk_softmax(
torch::Tensor& topk_weights,
torch::Tensor& topk_indices,
torch::Tensor& token_expert_indices,
torch::Tensor& gating_output);
\ No newline at end of file
......@@ -172,6 +172,9 @@ if CUDA_VERSION:
"awq_ext/layernorm/layernorm.cu",
"awq_ext/position_embedding/pos_encoding_kernels.cu",
"awq_ext/quantization/gemv_cuda.cu",
"awq_ext/vllm/moe_alig_block.cu",
"awq_ext/vllm/activation.cu",
"awq_ext/vllm/topk_softmax_kernels.cu",
],
extra_compile_args=extra_compile_args,
)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment