q_gemm.cu 7.21 KB
Newer Older
ilyas@huggingface.co's avatar
ilyas@huggingface.co committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include "q_gemm.cuh"
#include "util.cuh"
#include "matrix_view.cuh"
#include "../config.h"

#include "quant/qdq_2.cuh"
#include "quant/qdq_3.cuh"
#include "quant/qdq_4.cuh"
#include "quant/qdq_5.cuh"
#include "quant/qdq_6.cuh"
#include "quant/qdq_8.cuh"

#define BLOCK_KN_SIZE 128
#define BLOCK_M_SIZE_MAX 8
#define MAX_GROUPS_IN_BLOCK (BLOCK_KN_SIZE / 32)
#define CLEAR_N_SIZE 256

#include "q_gemm_kernel.cuh"
#include "q_gemm_kernel_gptq.cuh"

#include "compat_gemm.cuh"

gaoqiong's avatar
gaoqiong committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
// #if defined(USE_ROCM)
// #include <hipblas/hipblas.h>
// __host__ __forceinline__ hipblasStatus_t __compat_hipblasHgemm(hipblasHandle_t    handle,
//                                                                hipblasOperation_t transA,
//                                                                hipblasOperation_t transB,
//                                                                int                m,
//                                                                int                n,
//                                                                int                k,
//                                                                const half*        alpha,
//                                                                const half*        AP,
//                                                                int                lda,
//                                                                const half*        BP,
//                                                                int                ldb,
//                                                                const half*        beta,
//                                                                half*              CP,
//                                                                int                ldc) {
//     return hipblasHgemm(handle, transA, transB, m, n, k,
//                         reinterpret_cast<const hipblasHalf *>(alpha),
//                         reinterpret_cast<const hipblasHalf *>(AP), lda,
//                         reinterpret_cast<const hipblasHalf *>(BP), ldb,
//                         reinterpret_cast<const hipblasHalf *>(beta),
//                         reinterpret_cast<hipblasHalf *>(CP), ldc);
// }
// #define hipblasHgemm __compat_hipblasHgemm

// // Previous version of PyTorch were converting to rocBLAS instead of hipBLAS.
// #define rocblas_operation_none HIPBLAS_OP_N
// #define rocblas_hgemm __compat_hipblasHgemm
// #endif


ilyas@huggingface.co's avatar
ilyas@huggingface.co committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
void gemm_half_q_half_cuda_part
(
    const half* a,
    QMatrix* b,
    half* c,
    int size_m,
    int size_n,
    int size_k,
    int m_count,
    bool clear
)
{
    if (!b->is_gptq)
    {
        dim3 blockDim, gridDim;
        blockDim.x = BLOCK_KN_SIZE;
        blockDim.y = 1;
        blockDim.z = 1;
        gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE * 4);
        gridDim.y = DIVIDE(size_m, m_count);
        gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);

        fp_gemm_half_q_half_kernel kernel = pick_gemm_half_q_half_kernel(true, m_count);

        kernel<<<gridDim, blockDim>>>
        (
            a,
            b->cuda_q_weight,
            b->cuda_q_scale,
            b->cuda_q_scale_max,
            c,
            size_m,
            size_n,
            size_k,
            b->groups,
            b->groupsize,
            b->cuda_q_perm,
            b->rows_8,
            b->rows_6,
            b->rows_5,
            b->rows_4,
            b->rows_3,
            b->rows_2,
            clear
        );
    }
    else
    {
        dim3 blockDim, gridDim;
        blockDim.x = BLOCK_KN_SIZE;
        blockDim.y = 1;
        blockDim.z = 1;
        gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE * 4);
        gridDim.y = DIVIDE(size_m, m_count);
        gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);

        fp_gemm_half_q_half_gptq_kernel kernel = pick_gemm_half_q_half_gptq_kernel(true, m_count);

//         DBGX((uint64_t) b->cuda_q_perm);
//         DBGI(b->rows_4);
//         DBGI(b->height);

        kernel<<<gridDim, blockDim>>>
        (
            a,
            b->cuda_q_weight,
            b->cuda_gptq_qzeros,
            b->cuda_gptq_scales,
            c,
            size_m,
            size_n,
            size_k,
            b->groups,
            b->groupsize,
            b->cuda_q_perm,
            b->rows_4,
            clear
        );
    }
}

void gemm_half_q_half_cuda
(
    cublasHandle_t cublas_handle,
    const half* a,
    QMatrix* b,
    half* c,
    int size_m,
    int size_n,
    int size_k,
    bool clear,
    half* temp_dq,
    bool force_cuda
)
{
    if (size_m > MAX_Q_GEMM_ROWS && !force_cuda)
    {
        //printf("cublas\n");

        // Reconstruct FP16 matrix, then cuBLAS

        if (!temp_dq) temp_dq = b->temp_dq;
        b->reconstruct(temp_dq);

        //cublasSetMathMode(cublas_handle, CUBLAS_TENSOR_OP_MATH);

        const half alpha = __float2half(1.0f);
        const half beta = clear ? __float2half(0.0f) : __float2half(1.0f);
        cublasHgemm(cublas_handle,
                    CUBLAS_OP_N,
                    CUBLAS_OP_N,
                    size_n, size_m, size_k,
                    &alpha, temp_dq, size_n,
                            a,       size_k,
                    &beta,  c,       size_n);

        //const float alpha = 1.0f;
        //const float beta = clear ? 0.0f : 1.0f;
        //cublasSgemmEx(cublas_handle,
        //              CUBLAS_OP_N,
        //              CUBLAS_OP_N,
        //              size_n, size_m, size_k,
        //              &alpha, temp_dq, CUDA_R_16F, size_n,
        //                      a,       CUDA_R_16F, size_k,
        //              &beta,  c,       CUDA_R_16F, size_n);

        //const float alpha = 1.0f;
        //const float beta = clear ? 0.0f : 1.0f;
        //cublasGemmEx(cublas_handle,
        //             CUBLAS_OP_N, CUBLAS_OP_N,
        //             size_n, size_m, size_k,
        //             &alpha, temp_dq, CUDA_R_16F, size_n,
        //                     a,       CUDA_R_16F, size_k,
        //             &beta,  c,       CUDA_R_16F, size_n,
        //             CUDA_R_16F, CUBLAS_GEMM_DFALT_TENSOR_OP);
    }
    else
    {
        //printf("cuda\n");

        // Quantized matmul

        //if (clear) clear_tensor_cuda(c, size_m, size_n);

        int max_chunks = size_m / BLOCK_M_SIZE_MAX;
        int last_chunk = max_chunks * BLOCK_M_SIZE_MAX;
        int last_chunk_size = size_m - last_chunk;

        if (max_chunks)
        {
            gemm_half_q_half_cuda_part(a, b, c, last_chunk, size_n, size_k, BLOCK_M_SIZE_MAX, clear);
        }

        if (last_chunk_size)
        {
            gemm_half_q_half_cuda_part(a + last_chunk * size_k, b, c + last_chunk * size_n, last_chunk_size, size_n, size_k, last_chunk_size, clear);
        }
    }
}

__global__ void clear_kernel
(
    half* __restrict__ c,
    const int size_m,
    const int size_n
)
{
    int m = blockIdx.y;
    int n = (blockIdx.x * CLEAR_N_SIZE + threadIdx.x) * 8;
    if (n >= size_n) return;
    int4* c_ptr = (int4*)(c + m * size_n + n);
    *c_ptr = {};
}

void clear_tensor_cuda
(
    half* c,
    int size_m,
    int size_n
)
{
    return;
    dim3 blockDim, gridDim;
    blockDim.x = CLEAR_N_SIZE;
    blockDim.y = 1;
    gridDim.x = DIVIDE(size_n / 8, CLEAR_N_SIZE);
    gridDim.y = size_m;
    clear_kernel<<<gridDim, blockDim>>>(c, size_m, size_n);
}