Unverified Commit 9f9ce41f authored by Casper's avatar Casper Committed by GitHub
Browse files

Build older cuda wheels (#158)

parent 8110e028
......@@ -41,12 +41,13 @@ jobs:
matrix:
os: [ubuntu-20.04, windows-latest]
pyver: ["3.8", "3.9", "3.10", "3.11"]
cuda: ["12.1.1"]
cuda: ["11.8.0", "12.1.1"]
defaults:
run:
shell: pwsh
env:
CUDA_VERSION: ${{ matrix.cuda }}
PYPI_CUDA_VERSION: "12.1.1"
CUDA_VERSION: ${{ matrix.cuda }}
steps:
- name: Free Disk Space
......@@ -105,7 +106,11 @@ jobs:
run: |
$env:CUDA_PATH = $env:CONDA_PREFIX
$env:CUDA_HOME = $env:CONDA_PREFIX
$env:PYPI_BUILD = 1
# Only add +cu118 to wheel if not releasing on PyPi
if ( $env:CUDA_VERSION -eq $env:PYPI_CUDA_VERSION ){
$env:PYPI_BUILD = 1
}
python setup.py sdist bdist_wheel
......
......@@ -34,12 +34,23 @@ Requirements:
---
Install:
- Use pip to install awq
- Install from PyPi distributed wheels (torch 2.1.0 + CUDA 12.1.1)
```
pip install autoawq
```
- Install from GitHub a release (torch 2.0.1 + CUDA 11.8.0)
Remember to grab the right link for the [latest release](https://github.com/casper-hansen/AutoAWQ/releases) that matches your environment.
For example, this wheel is torch 2.0.1 with CUDA 11.8.0 and Python 3.10 for Linux:
```
pip install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
```
### Using conda
CUDA dependencies can be hard to manage sometimes. It is recommended to use conda with AutoAWQ:
......
......@@ -43,7 +43,7 @@ common_setup_kwargs = {
}
requirements = [
"torch>=2.1.0",
"torch>=2.0.1",
"transformers>=4.35.0",
"tokenizers>=0.12.1",
"accelerate",
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment