Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
AutoAWQ
Commits
984fd2f8
Commit
984fd2f8
authored
Sep 20, 2023
by
Casper Hansen
Browse files
Add GPT BigCode support (StarCoder)
parent
a5e8b048
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
71 additions
and
6 deletions
+71
-6
awq/models/__init__.py
awq/models/__init__.py
+2
-1
awq/models/auto.py
awq/models/auto.py
+2
-1
awq/models/gpt_bigcode.py
awq/models/gpt_bigcode.py
+61
-0
awq/quantize/auto_scale.py
awq/quantize/auto_scale.py
+6
-4
No files found.
awq/models/__init__.py
View file @
984fd2f8
...
...
@@ -3,4 +3,5 @@ from .llama import LlamaAWQForCausalLM
from
.opt
import
OptAWQForCausalLM
from
.falcon
import
FalconAWQForCausalLM
from
.bloom
import
BloomAWQForCausalLM
from
.gptj
import
GPTJAWQForCausalLM
\ No newline at end of file
from
.gptj
import
GPTJAWQForCausalLM
from
.gpt_bigcode
import
GptBigCodeAWQForCausalLM
\ No newline at end of file
awq/models/auto.py
View file @
984fd2f8
...
...
@@ -11,7 +11,8 @@ AWQ_CAUSAL_LM_MODEL_MAP = {
"RefinedWebModel"
:
FalconAWQForCausalLM
,
"falcon"
:
FalconAWQForCausalLM
,
"bloom"
:
BloomAWQForCausalLM
,
"gptj"
:
GPTJAWQForCausalLM
"gptj"
:
GPTJAWQForCausalLM
,
"gpt_bigcode"
:
GptBigCodeAWQForCausalLM
}
def
check_and_get_model_type
(
model_dir
,
trust_remote_code
=
True
):
...
...
awq/models/gpt_bigcode.py
0 → 100644
View file @
984fd2f8
from
.base
import
BaseAWQForCausalLM
from
transformers.models.gpt_bigcode.modeling_gpt_bigcode
import
GPTBigCodeForCausalLM
,
GPTBigCodeBlock
class
GptBigCodeAWQForCausalLM
(
BaseAWQForCausalLM
):
layer_type
=
"GPTBigCodeBlock"
max_new_tokens_key
=
"n_positions"
@
staticmethod
def
get_model_layers
(
model
:
GPTBigCodeForCausalLM
):
return
model
.
transformer
.
h
@
staticmethod
def
get_act_for_scaling
(
module
:
GPTBigCodeBlock
):
return
dict
(
is_scalable
=
True
,
scale_name
=
"mlp.act"
,
scale_layer
=
module
.
mlp
.
act
,
scale_shape
=
module
.
mlp
.
c_fc
.
out_features
)
@
staticmethod
def
move_embed
(
model
:
GPTBigCodeForCausalLM
,
device
):
model
.
transformer
.
wte
=
model
.
transformer
.
wte
.
to
(
device
)
model
.
transformer
.
drop
=
model
.
transformer
.
drop
.
to
(
device
)
@
staticmethod
def
get_layers_for_scaling
(
module
:
GPTBigCodeBlock
,
input_feat
,
module_kwargs
):
layers
=
[]
# attention input
layers
.
append
(
dict
(
prev_op
=
module
.
ln_1
,
layers
=
[
module
.
attn
.
c_attn
],
inp
=
input_feat
[
'attn.c_attn'
],
module2inspect
=
module
.
attn
,
kwargs
=
module_kwargs
))
# attention output
# layers.append(dict(
# prev_op=module.attn.c_attn,
# layers=[module.attn.c_proj],
# inp=input_feat['attn.c_proj']
# ))
# linear 1
layers
.
append
(
dict
(
prev_op
=
module
.
ln_2
,
layers
=
[
module
.
mlp
.
c_fc
],
inp
=
input_feat
[
'mlp.c_fc'
],
module2inspect
=
module
.
mlp
))
# linear 2
layers
.
append
(
dict
(
prev_op
=
module
.
mlp
.
act
,
layers
=
[
module
.
mlp
.
c_proj
],
inp
=
input_feat
[
'mlp.c_proj'
]
))
return
layers
awq/quantize/auto_scale.py
View file @
984fd2f8
...
...
@@ -6,12 +6,14 @@ import logging
from
transformers.models.bloom.modeling_bloom
import
BloomBlock
,
BloomGelu
from
transformers.models.opt.modeling_opt
import
OPTDecoderLayer
from
transformers.models.llama.modeling_llama
import
LlamaDecoderLayer
,
LlamaRMSNorm
from
transformers.activations
import
NewGELUActivation
from
transformers.activations
import
NewGELUActivation
,
PytorchGELUTanh
from
awq.modules.act
import
ScaledActivation
from
awq.utils.module
import
get_op_by_name
,
get_op_name
,
set_op_by_name
__all__
=
[
"auto_scale_block"
,
"apply_scale"
]
norms
=
[
nn
.
LayerNorm
,
LlamaRMSNorm
]
act_functions
=
[
nn
.
GELU
,
BloomGelu
,
NewGELUActivation
,
PytorchGELUTanh
]
@
torch
.
no_grad
()
def
get_weight_scale
(
weight
,
q_group_size
=-
1
):
...
...
@@ -80,7 +82,7 @@ def scale_fc_fc(fc1, fc2, scales):
@
torch
.
no_grad
()
def
scale_gelu_fc
(
gelu
,
fc
,
scales
):
assert
any
(
isinstance
(
gelu
,
t
)
for
t
in
[
nn
.
GELU
,
BloomGelu
,
NewGELUActiva
tion
]
)
assert
any
(
isinstance
(
gelu
,
t
)
for
t
in
act_func
tion
s
)
assert
isinstance
(
fc
,
nn
.
Linear
)
fc
.
weight
.
mul_
(
scales
.
view
(
1
,
-
1
).
to
(
fc
.
weight
.
device
))
...
...
@@ -194,11 +196,11 @@ def apply_scale(module, scales_list, input_feat_dict=None):
assert
len
(
layers
)
==
1
scale_fc_fc
(
prev_op
,
layers
[
0
],
scales
)
elif
any
(
isinstance
(
prev_op
,
t
)
for
t
in
[
nn
.
LayerNorm
,
LlamaRMSNorm
]
)
\
elif
any
(
isinstance
(
prev_op
,
t
)
for
t
in
norms
)
\
or
'rmsnorm'
in
str
(
prev_op
.
__class__
).
lower
():
scale_ln_fcs
(
prev_op
,
layers
,
scales
)
elif
any
(
isinstance
(
prev_op
,
t
)
for
t
in
[
nn
.
GELU
,
BloomGelu
,
NewGELUActiva
tion
]
):
elif
any
(
isinstance
(
prev_op
,
t
)
for
t
in
act_func
tion
s
):
new_module
=
ScaledActivation
(
prev_op
,
scales
)
set_op_by_name
(
module
,
prev_op_name
,
new_module
)
scale_gelu_fc
(
prev_op
,
layers
[
0
],
scales
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment