Commit 90f54dbb authored by Casper Hansen's avatar Casper Hansen
Browse files

Create MPTModel class

parent e80663bb
import torch
import torch.nn as nn
from awq.modules.fused.block import MPTBlock
from transformers.modeling_outputs import BaseModelOutputWithPast
class MPTModel(nn.Module):
def __init__(self, vocab_size, blocks, wte, norm_f):
super().__init__()
self.vocab_size = vocab_size
self.wte = wte
self.blocks: list[MPTBlock] = nn.ModuleList(blocks)
self.norm_f = norm_f
self.attn_uses_sequence_id = False
self.prefix_lm = False
@torch.inference_mode()
def forward(self, input_ids, attn_bias=None, attention_mask=None, is_causal=None, *args, **kwargs):
_bsz, seqlen = input_ids.shape
h = self.wte(input_ids)
mask = None
if seqlen > 1:
mask = torch.full(
(1, 1, seqlen, seqlen), float("-inf"), device=input_ids.device
)
mask = torch.triu(mask, diagonal=self.blocks[0].attn.start_pos + 1).type_as(h)
for layer in self.blocks:
h, _, past_key_value = layer(h, None, attention_mask=mask, is_causal=is_causal)
h = self.norm_f(h)
return BaseModelOutputWithPast(last_hidden_state=h, past_key_values=past_key_value, hidden_states=(), attentions=())
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment