Unverified Commit 7133575a authored by Casper's avatar Casper Committed by GitHub
Browse files

Evaluation: Add more evals (#283)

parent 149236e4
from awq.evaluation.eval_utils import (
evaluate_perplexity,
eval_librispeech,
eval_mmlu,
)
from awq.evaluation.humaneval_utils import eval_humaneval
from awq.evaluation.kl_divergence import eval_kl_divergence
\ No newline at end of file
import torch
import torch.nn as nn
from tqdm import tqdm
from lm_eval import evaluator
from datasets import load_dataset
from transformers import pipeline
from evaluate import load as load_metric
from lm_eval.tasks import initialize_tasks
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
def get_device():
if torch.backends.mps.is_available():
return 'mps'
elif torch.cuda.is_available():
return 'cuda:0'
else:
return 'cpu'
def evaluate_perplexity(model, tokenizer):
def _perplexity(nlls, n_samples, seqlen):
return torch.exp(torch.stack(nlls).sum() / (n_samples * seqlen))
# load and prepare dataset
data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
data = tokenizer("\n\n".join(data['text']), return_tensors='pt')
data = data.input_ids.to(model.device)
seqlen = 2048
model = model.eval()
n_samples = data.numel() // seqlen
nlls = []
with tqdm(range(n_samples), desc="Perplexity -") as progress_bar:
for i in progress_bar:
start_index = (i * seqlen)
end_index = ((i + 1) * seqlen)
batch = data[:, start_index:end_index].to(model.device)
with torch.no_grad():
logits = model(batch).logits
shift_logits = logits[:, :-1, :].contiguous().float()
shift_labels = data[:, start_index:end_index][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
neg_log_likelihood = loss.float() * seqlen
nlls.append(neg_log_likelihood)
curr_ppl = _perplexity(nlls, i+1, seqlen)
progress_bar.set_description(f"Perplexity {curr_ppl:.3f}")
ppl = _perplexity(nlls, n_samples, seqlen)
return ppl.item()
def eval_librispeech(model_id, num_samples=100, batch_size=4):
try:
import jiwer, librosa, soundfile
except ImportError:
print("Please install the following: pip install jiwer librosa soundfile")
dataset = load_dataset("librispeech_asr", "clean", split="test", streaming=True)
# Load the Whisper model pipeline for automatic speech recognition
pipe = pipeline(
task="automatic-speech-recognition",
model=model_id,
batch_size=batch_size,
device=get_device(),
torch_dtype=torch.float16,
)
# Word normalizer
normalizer = BasicTextNormalizer()
# Load the WER metric
wer_metric = load_metric("wer")
texts = []
audio = []
for i, data in tqdm(enumerate(dataset), total=num_samples, desc="Loading dataset"):
if len(audio) == num_samples: break
audio.append(data["audio"])
texts.append(data["text"])
references = []
predictions = []
with tqdm(range(0, num_samples, batch_size), desc="Word Error Rate: -") as pbar:
for i in pbar:
batch_audio = audio[i:i+batch_size]
batch_texts = texts[i:i+batch_size]
# inference
results = pipe(batch_audio, batch_size=len(batch_audio))
# normalize text
normalized_predictions = [normalizer(result["text"]) for result in results]
normalized_texts = [normalizer(text) for text in batch_texts]
predictions.extend(normalized_predictions)
references.extend(normalized_texts)
# word error rate computation
wer = wer_metric.compute(predictions=predictions, references=references) * 100
pbar.set_description(f"Word Error Rate: {wer:.3f}%")
def eval_mmlu(model_path="gpt2", num_fewshot=1, batch_size=1, device="cuda:0", task_use_pretrained=False):
try:
import vllm
VLLM_INSTALLED = True
except ImportError:
VLLM_INSTALLED = False
initialize_tasks(verbosity="DEBUG")
if VLLM_INSTALLED:
model = "vllm"
model_args = dict(
pretrained=model_path,
max_model_len=2048,
dtype="float16",
trust_remote_code=True,
)
if not task_use_pretrained:
model_args["quantization"] = "awq"
else:
model = "hf"
model_args = dict(
pretrained=model_path,
device_map_option=device,
dtype="float16",
trust_remote_code=True,
)
model_args = ",".join([f"{k}={v}" for k,v in model_args.items()])
results = evaluator.simple_evaluate(
model=model,
model_args=model_args,
tasks=['mmlu'],
num_fewshot=num_fewshot,
batch_size=batch_size,
device=device,
log_samples=False,
)
print(evaluator.make_table(results))
if __name__ == '__main__':
### PERPLEXITY
# model_path = 'mistralai/Mistral-7B-Instruct-v0.1'
# model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
# tokenizer = AutoTokenizer.from_pretrained(model_path)
# evaluate_perplexity(model, tokenizer)
### WORD ERROR RATE
# model_id = "distil-whisper/distil-small.en" # 3.594
model_id = "distil-whisper/distil-medium.en" # 3.436
eval_librispeech(model_id)
# Adapted from https://github.com/abacaj/code-eval
import io
import os
import json
import gzip
import torch
import signal
import tempfile
import itertools
import contextlib
import numpy as np
from tqdm import tqdm
import multiprocessing
from datasets import load_dataset
from collections import defaultdict, Counter
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import (
List,
Union,
Iterable,
Dict,
Optional,
)
from transformers import (
AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
)
def eval_humaneval(
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
out_path: str = "humaneval_out.jsonl",
format_tabs: bool = True,
):
problems = {example["task_id"]: example for example in load_dataset("openai_humaneval")["test"]}
samples = []
for i, (task_id, task) in tqdm(enumerate(problems.items()), total=len(problems) ):
if format_tabs:
prompt = task["prompt"].replace(" ", "\t")
else:
prompt = task["prompt"]
batch_completions = generate_batch_completion(
model, tokenizer, prompt, 1
)
for sample in batch_completions:
result = dict(
task_id=task_id,
completion=sample,
)
samples += [result]
with open(out_path, 'wb') as fp:
for x in samples:
fp.write((json.dumps(x) + "\n").encode('utf-8'))
results = evaluate_functional_correctness(
sample_file=out_path,
k=[1],
n_workers=4,
timeout=3.0,
)
print(results)
@torch.inference_mode()
def generate_batch_completion(
model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prompt, batch_size
) -> list[str]:
input_batch = [prompt for _ in range(batch_size)]
inputs = tokenizer(input_batch, return_tensors="pt").to(model.model.device)
input_ids_cutoff = inputs.input_ids.size(dim=1)
generated_ids = model.generate(
**inputs,
use_cache=True,
max_new_tokens=512,
temperature=0.2,
top_p=0.95,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id,
)
batch_completions = tokenizer.batch_decode(
[ids[input_ids_cutoff:] for ids in generated_ids],
skip_special_tokens=True,
)
def filter_code(completion: str) -> str:
# The program tends to overwrite, we only take the first function
completion = completion.lstrip("\n")
return completion.split("\n\n")[0]
def fix_indents(text: str) -> str:
return text.replace("\t", " ")
return [filter_code(fix_indents(completion)) for completion in batch_completions]
def check_correctness(problem: Dict, completion: str, timeout: float,
completion_id: Optional[int] = None) -> Dict:
"""
Evaluates the functional correctness of a completion by running the test
suite provided in the problem.
:param completion_id: an optional completion ID so we can match
the results later even if execution finishes asynchronously.
"""
def unsafe_execute():
with create_tempdir():
# These system calls are needed when cleaning up tempdir.
import os
import shutil
rmtree = shutil.rmtree
rmdir = os.rmdir
chdir = os.chdir
# Disable functionalities that can make destructive changes to the test.
reliability_guard()
# Construct the check program and run it.
check_program = (
problem["prompt"] + completion + "\n" +
problem["test"] + "\n" +
f"check({problem['entry_point']})"
)
try:
exec_globals = {}
with swallow_io():
with time_limit(timeout):
exec(check_program, exec_globals)
result.append("passed")
except TimeoutException:
result.append("timed out")
except BaseException as e:
result.append(f"failed: {e}")
# Needed for cleaning up.
shutil.rmtree = rmtree
os.rmdir = rmdir
os.chdir = chdir
manager = multiprocessing.Manager()
result = manager.list()
p = multiprocessing.Process(target=unsafe_execute)
p.start()
p.join(timeout=timeout + 1)
if p.is_alive():
p.kill()
if not result:
result.append("timed out")
return dict(
task_id=problem["task_id"],
passed=result[0] == "passed",
result=result[0],
completion_id=completion_id,
)
@contextlib.contextmanager
def time_limit(seconds: float):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.setitimer(signal.ITIMER_REAL, seconds)
signal.signal(signal.SIGALRM, signal_handler)
try:
yield
finally:
signal.setitimer(signal.ITIMER_REAL, 0)
@contextlib.contextmanager
def swallow_io():
stream = WriteOnlyStringIO()
with contextlib.redirect_stdout(stream):
with contextlib.redirect_stderr(stream):
with redirect_stdin(stream):
yield
@contextlib.contextmanager
def create_tempdir():
with tempfile.TemporaryDirectory() as dirname:
with chdir(dirname):
yield dirname
class TimeoutException(Exception):
pass
class WriteOnlyStringIO(io.StringIO):
""" StringIO that throws an exception when it's read from """
def read(self, *args, **kwargs):
raise IOError
def readline(self, *args, **kwargs):
raise IOError
def readlines(self, *args, **kwargs):
raise IOError
def readable(self, *args, **kwargs):
""" Returns True if the IO object can be read. """
return False
class redirect_stdin(contextlib._RedirectStream): # type: ignore
_stream = 'stdin'
@contextlib.contextmanager
def chdir(root):
if root == ".":
yield
return
cwd = os.getcwd()
os.chdir(root)
try:
yield
except BaseException as exc:
raise exc
finally:
os.chdir(cwd)
def stream_jsonl(filename: str) -> Iterable[Dict]:
"""
Parses each jsonl line and yields it as a dictionary
"""
if filename.endswith(".gz"):
with open(filename, "rb") as gzfp:
with gzip.open(gzfp, 'rt') as fp:
for line in fp:
if any(not x.isspace() for x in line):
yield json.loads(line)
else:
with open(filename, "r") as fp:
for line in fp:
if any(not x.isspace() for x in line):
yield json.loads(line)
def estimate_pass_at_k(
num_samples: Union[int, List[int], np.ndarray],
num_correct: Union[List[int], np.ndarray],
k: int,
) -> np.ndarray:
"""
Estimates pass@k of each problem and returns them in an array.
"""
def estimator(n: int, c: int, k: int) -> float:
"""
Calculates 1 - comb(n - c, k) / comb(n, k).
"""
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
if isinstance(num_samples, int):
num_samples_it = itertools.repeat(num_samples, len(num_correct))
else:
assert len(num_samples) == len(num_correct)
num_samples_it = iter(num_samples)
return np.array(
[estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)]
)
def evaluate_functional_correctness(
sample_file: str,
k: List[int] = [1, 10, 100],
n_workers: int = 4,
timeout: float = 3.0,
):
problems = {example["task_id"]: example for example in load_dataset("openai_humaneval")["test"]}
# Check the generated samples against test suites.
with ThreadPoolExecutor(max_workers=n_workers) as executor:
futures = []
completion_id = Counter()
n_samples = 0
results = defaultdict(list)
print("Reading samples...")
for sample in tqdm(stream_jsonl(sample_file)):
task_id = sample["task_id"]
completion = sample["completion"]
args = (problems[task_id], completion, timeout, completion_id[task_id])
future = executor.submit(check_correctness, *args)
futures.append(future)
completion_id[task_id] += 1
n_samples += 1
if len(completion_id) < len(problems):
include_keys = list(problems.keys())[:len(completion_id)]
print(f"Only found {len(completion_id)} solutions, reducing problems from {len(problems)}...")
problems = {k:v for k,v in problems.items() if k in include_keys}
assert len(completion_id) == len(problems), "Some problems are not attempted."
print("Running test suites...")
for future in tqdm(as_completed(futures), total=len(futures)):
result = future.result()
results[result["task_id"]].append((result["completion_id"], result))
# Calculate pass@k.
total, correct = [], []
for result in results.values():
result.sort()
passed = [r[1]["passed"] for r in result]
total.append(len(passed))
correct.append(sum(passed))
total = np.array(total)
correct = np.array(correct)
ks = k
pass_at_k = {
f"pass@{k}": estimate_pass_at_k(total, correct, k).mean()
for k in ks
if (total >= k).all()
}
# Finally, save the results in one file:
def combine_results():
for sample in stream_jsonl(sample_file):
task_id = sample["task_id"]
result = results[task_id].pop(0)
sample["result"] = result[1]["result"]
sample["passed"] = result[1]["passed"]
yield sample
return pass_at_k
def reliability_guard(maximum_memory_bytes: Optional[int] = None):
"""
This disables various destructive functions and prevents the generated code
from interfering with the test (e.g. fork bomb, killing other processes,
removing filesystem files, etc.)
WARNING
This function is NOT a security sandbox. Untrusted code, including, model-
generated code, should not be blindly executed outside of one. See the
Codex paper for more information about OpenAI's code sandbox, and proceed
with caution.
"""
import platform, faulthandler
if maximum_memory_bytes is not None:
import resource
resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes))
resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes))
if not platform.uname().system == 'Darwin':
resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes))
faulthandler.disable()
import builtins
builtins.exit = None
builtins.quit = None
import os
os.environ['OMP_NUM_THREADS'] = '1'
os.kill = None
os.system = None
os.putenv = None
os.remove = None
os.removedirs = None
os.rmdir = None
os.fchdir = None
os.setuid = None
os.fork = None
os.forkpty = None
os.killpg = None
os.rename = None
os.renames = None
os.truncate = None
os.replace = None
os.unlink = None
os.fchmod = None
os.fchown = None
os.chmod = None
os.chown = None
os.chroot = None
os.fchdir = None
os.lchflags = None
os.lchmod = None
os.lchown = None
os.getcwd = None
os.chdir = None
import shutil
shutil.rmtree = None
shutil.move = None
shutil.chown = None
import subprocess
subprocess.Popen = None # type: ignore
import sys
sys.modules['ipdb'] = None
sys.modules['joblib'] = None
sys.modules['resource'] = None
sys.modules['psutil'] = None
sys.modules['tkinter'] = None
if __name__ == '__main__':
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from awq import AutoAWQForCausalLM
model_path = 'TheBloke/zephyr-7B-beta-AWQ'
model = AutoAWQForCausalLM.from_quantized(model_path, device_map="auto", max_new_tokens=2048)
tokenizer = AutoTokenizer.from_pretrained(model_path)
eval_humaneval(model, tokenizer)
# adapted from https://gist.github.com/Ttl/0d51f739dc59254b4b2183e259c97d82
import torch
import numpy as np
from tqdm import tqdm
from datasets import load_dataset
from transformers import (
PreTrainedTokenizer,
PreTrainedModel,
AutoModelForCausalLM,
AutoTokenizer,
)
try:
from scipy.stats import bayes_mvs
from scipy.stats import t as student_t
from scipy.stats.mstats import mquantiles_cimj
SCIPY_INSTALLED = True
except:
SCIPY_INSTALLED = False
@torch.jit.script
def rel_entr(x, y):
mask = (x > 0) & (y > 0)
result = torch.where(mask, x * torch.log(x / y), torch.zeros_like(x))
result[(x > 0) & (y <= 0)] = float('inf')
return result
def bin_conf(p, n, z):
# Binomial distribution confidence bounds
# Bayes estimator when p is degenerate
if p == 0:
p = 1 / (n + 2)
if p == 1:
p = 1 - 1 / (n + 2)
return z * torch.sqrt(p*(1-p)/n)
def eval_kl_divergence(ref_model: PreTrainedModel, eval_model: PreTrainedModel, tokenizer: PreTrainedTokenizer, seqlen: int):
if not SCIPY_INSTALLED:
raise Exception("SciPy needs to be installed for KL Divergence evaluation: pip install scipy")
# load dataset
data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
data = tokenizer("\n\n".join(data['text']), return_tensors='pt')
data = data.input_ids.to(ref_model.device)
n_samples = data.numel() // seqlen
alpha = 0.01
kls = []
top1 = 0
top5 = 0
top10 = 0
eval_top5 = 0
eval_top10 = 0
samples = 0
i = 0
# start eval
with tqdm(range(n_samples), desc="KL Div") as progress_bar:
for i in progress_bar:
start_index = (i * seqlen)
end_index = ((i + 1) * seqlen)
batch_len = end_index-start_index
batch = data[:, start_index:end_index]
# get logits
with torch.no_grad():
y1 = ref_model(batch)[0]
y2 = eval_model(batch)[0]
# kl divergence
y1_probs = torch.softmax(y1, dim=-1)
y2_probs = torch.softmax(y2, dim=-1)
relative_entropy = rel_entr(y1_probs, y2_probs)
kl_div = torch.sum(relative_entropy, dim=-1).squeeze(0)
kls.append(torch.nan_to_num(kl_div).tolist())
# stats
eval_argmax = torch.argmax(y2, axis=-1).squeeze(0)
ref_argmax = torch.argmax(y1, axis=-1).squeeze(0)
eval_part5 = torch.topk(y2, k=5, dim=-1).indices[:, :, -5].squeeze(0)
ref_part5 = torch.topk(y1, k=5, dim=-1).indices[:, :, -5].squeeze(0)
eval_part10 = torch.topk(y2, k=10, dim=-1).indices[:, :, -10].squeeze(0)
ref_part10 = torch.topk(y1, k=10, dim=-1).indices[:, :, -10].squeeze(0)
top1 += (eval_argmax == ref_argmax).sum().item()
top5 += ((ref_argmax == eval_part5).sum()).item()
top10 += ((ref_argmax == eval_part10).sum()).item()
eval_top5 += ((eval_argmax == ref_part5).sum()).item()
eval_top10 += ((eval_argmax == ref_part10).sum()).item()
samples += batch_len
progress_bar.set_description(
f"KL Div: {torch.mean(torch.Tensor(kls)):.4g}, "
f"Top 1: {top1 / samples:.4g}, "
f"Top 5: {top5 / samples:.4g}, "
f"Top 10: {top10 / samples:.4g}"
)
z = student_t.ppf(1 - alpha/2, samples)
m_conf = z*np.sqrt(np.mean([k**2 for k in kls])/len(kls))
m, _, __ = bayes_mvs(kls, 1-alpha)
q90 = np.quantile(kls, 0.90)
q95 = np.quantile(kls, 0.95)
q99 = np.quantile(kls, 0.99)
q_bounds = mquantiles_cimj(kls, prob=[0.90, 0.95, 0.99])
print(" -- ")
print(" ** Reference model:", ref_model.config.model_type)
print(" ** Evaluation model:", eval_model.config.model_type)
print(" -- ")
print(f" ** KL Divergence: {m[0]:.6g}, [{m[1][0]:.6g} - {m[1][1]:.6g}]")
print(f" ** q90: {q90:.4g}, [{q_bounds[0][0]:.4g} - {q_bounds[1][0]:.4g}]")
print(f" ** q95: {q95:.4g}, [{q_bounds[0][1]:.4g} - {q_bounds[1][1]:.4g}]")
print(f" ** q99: {q99:.4g}, [{q_bounds[0][2]:.4g} - {q_bounds[1][2]:.4g}]")
print(f"max: {np.max(kls):.4g}")
print(" -- ")
print("Reference top token in eval top-n probability:")
print(f" ** ref_top1: {top1 / samples:.4g} ± {bin_conf(top1/samples, samples, z):.4g}")
print(f" ** ref_top5: {top5 / samples:.4g} ± {bin_conf(top5/samples, samples, z):.4g}")
print(f" ** ref_top10: {top10 / samples:4g} ± {bin_conf(top10/samples, samples, z):.4g}")
print("Eval top token in reference top-n probability:")
print(f" ** eval_top5: {eval_top5 / samples:.4g} ± {bin_conf(eval_top5/samples, samples, z):.4g}")
print(f" ** eval_top10: {eval_top10 / samples:4g} ± {bin_conf(eval_top10/samples, samples, z):.4g}")
if __name__ == '__main__':
# ref_model_path = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
# eval_model_path = "TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T"
ref_model_path = eval_model_path = "gpt2"
tokenizer = AutoTokenizer.from_pretrained(ref_model_path)
ref_model = AutoModelForCausalLM.from_pretrained(ref_model_path, device_map="auto")
eval_model = AutoModelForCausalLM.from_pretrained(eval_model_path, device_map="auto")
eval_kl_divergence(ref_model, eval_model, tokenizer, seqlen=1024)
\ No newline at end of file
import torch
import torch.nn as nn
from tqdm import tqdm
from datasets import load_dataset
def evaluate_perplexity(model, tokenizer):
def _perplexity(nlls, n_samples, seqlen):
return torch.exp(torch.stack(nlls).sum() / (n_samples * seqlen))
# load and prepare dataset
data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
data = tokenizer("\n\n".join(data['text']), return_tensors='pt')
data = data.input_ids.to(model.device)
seqlen = 2048
model = model.eval()
n_samples = data.numel() // seqlen
nlls = []
with tqdm(range(n_samples), desc="Perplexity -") as progress_bar:
for i in progress_bar:
start_index = (i * seqlen)
end_index = ((i + 1) * seqlen)
batch = data[:, start_index:end_index].to(model.device)
with torch.no_grad():
logits = model(batch).logits
shift_logits = logits[:, :-1, :].contiguous().float()
shift_labels = data[:, start_index:end_index][:, 1:]
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
neg_log_likelihood = loss.float() * seqlen
nlls.append(neg_log_likelihood)
curr_ppl = _perplexity(nlls, i+1, seqlen)
progress_bar.set_description(f"Perplexity {curr_ppl:.3f}")
ppl = _perplexity(nlls, n_samples, seqlen)
return ppl.item()
if __name__ == '__main__':
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = 'mistralai/Mistral-7B-Instruct-v0.1'
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
evaluate_perplexity(model, tokenizer)
......@@ -2,7 +2,13 @@ import argparse
from lm_eval import evaluator
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
from awq.utils.eval_utils import evaluate_perplexity
from awq.evaluation import (
evaluate_perplexity,
eval_librispeech,
eval_mmlu,
eval_humaneval,
eval_kl_divergence,
)
def run_eval(
model_path, quant_file, device, tasks, task_batch_size, task_n_shot,
......@@ -11,18 +17,32 @@ def run_eval(
"""
Post quantization: Evaluate perplexity on wikitext with EleutherAI Evaluation Harness
"""
tasks = tasks.split(',')
# Load model
if task_use_pretrained:
model = AutoAWQForCausalLM.from_pretrained(model_path, safetensors=pretrained_safetensors)
else:
model = AutoAWQForCausalLM.from_quantized(model_path, quant_file, fuse_layers=False)
if len(tasks) == 1 and tasks[0] != "mmlu" and tasks[0] != "librispeech":
if task_use_pretrained:
model = AutoAWQForCausalLM.from_pretrained(model_path, safetensors=pretrained_safetensors)
else:
model = AutoAWQForCausalLM.from_quantized(model_path, quant_file, fuse_layers=False)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Load adapter
tasks = tasks.split(',')
if len(tasks) == 1 and tasks[0] == 'wikitext':
evaluate_perplexity(model.model, tokenizer)
elif len(tasks) == 1 and tasks[0] == 'librispeech':
eval_librispeech(model_path)
elif len(tasks) == 1 and tasks[0] == 'mmlu':
eval_mmlu(model_path, task_n_shot, task_batch_size, device, task_use_pretrained)
elif len(tasks) == 1 and tasks[0] == 'humaneval':
eval_humaneval(model, tokenizer)
elif len(tasks) == 1 and tasks[0] == 'kldiv':
eval_kl_divergence(model.model, model.model, tokenizer, seqlen=1024)
else:
# Evaluate perplexity of quantized model
......@@ -43,6 +63,9 @@ if __name__ == '__main__':
- Run perplexity unquantized FP16 model:
python examples/eval.py --use_pretrained --model_path lmsys/vicuna-7b-v1.5
- Run MMLU of quantized model:
python examples/eval.py --model_path TheBloke/zephyr-7B-beta-AWQ --tasks mmlu --n_shot 1 --batch_size 4
"""
parser = argparse.ArgumentParser()
......
......@@ -58,5 +58,14 @@ if platform.system().lower() != "darwin" and HAS_CUDA:
setup(
packages=find_packages(),
install_requires=requirements,
extras_require={
"eval": [
"lm_eval>=0.4.0",
"tabulate",
"protobuf",
"evaluate",
"scipy"
],
},
**common_setup_kwargs
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment