moe.py 5.76 KB
Newer Older
Casper's avatar
Casper committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
from typing import Dict

try:
    import awq_ext  # with CUDA kernels

    AWQ_INSTALLED = True
except:
    AWQ_INSTALLED = False


class FusedSparseMoeBlock(torch.nn.Module):
    def __init__(
        self,
        top_k,
        gate,
        ws,
        w2s,
    ):
        super().__init__()
        self.gate = gate
        self.top_k = top_k
        self.ws = ws
        self.w2s = w2s

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        batch_size, sequence_length, hidden_dim = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_dim)

        # router_logits: (batch * sequence_length, n_experts)
        router_logits = self.gate(hidden_states)

        final_hidden_states = apply_moe_weights(
            self.ws,
            self.w2s,
            hidden_states,
            router_logits,
            self.top_k,
            renormalize=True,
        )

        return final_hidden_states.view(batch_size, sequence_length, hidden_dim)


def apply_moe_weights(
    w1: Dict[str, torch.Tensor],
    w2: Dict[str, torch.Tensor],
    x: torch.Tensor,
    gating_output: torch.Tensor,
    topk: int,
    renormalize: bool,
) -> torch.Tensor:
    topk_weights, topk_ids = fused_topk(gating_output, topk, renormalize)
    (sorted_token_ids, expert_ids, num_tokens_post_padded) = moe_align_block_size(
        topk_ids, 16, w1.qweight.shape[0]
    )

    x = x.view(x.shape[0], 1, *x.shape[1:])

    gate_up = awq_ext.grouped_gemm_forward(
        x,
        w1.qweight,
        w1.scales,
        w1.qzeros,
        topk_weights,
        sorted_token_ids,
        expert_ids,
        num_tokens_post_padded,
        False,
        8,
    )

    out = torch.empty(
        (gate_up.shape[:-1] + (gate_up.shape[-1] // 2,)), dtype=x.dtype, device=x.device
    )
    awq_ext.silu_and_mul(out, gate_up)

    out = awq_ext.grouped_gemm_forward(
        out,
        w2.qweight,
        w2.scales,
        w2.qzeros,
        topk_weights,
        sorted_token_ids,
        expert_ids,
        num_tokens_post_padded,
        True,
        8,
    )

    return torch.sum(out, dim=1)



def moe_align_block_size(topk_ids: torch.Tensor, block_size: int, num_experts: int):
    """
    Aligns the token distribution across experts to be compatible with block size for matrix multiplication.

    Parameters:
    - topk_ids: A tensor of shape [total_tokens, top_k] representing the top-k expert indices for each token.
    - block_size: The block size used in block matrix multiplication.
    - num_experts: The total number of experts.

    Returns:
    - sorted_token_ids: A tensor containing the sorted token indices according to their allocated expert.
    - expert_ids: A tensor indicating the assigned expert index for each block.
    - num_tokens_post_padded: The total number of tokens after padding, ensuring divisibility by block_size.

    This function pads the number of tokens that each expert needs to process so that it is divisible by block_size.
    Padding ensures that during block matrix multiplication, the dimensions align correctly.

    Example:
    Given topk_ids = [[2, 3, 4], [1, 2, 4], [1, 3, 4], [1, 2, 3]], block_size = 4, and num_experts = 4:
    - We initially have 12 tokens (after repeating 'top_k' times) and 4 experts, with each expert needing to process 3 tokens.
    - As block_size is 4, we pad 1 token for each expert.
    - First, flatten topk_ids to [2, 3, 4, 1, 2, 4, 1, 3, 4, 1, 2, 3].
    - Then append padding tokens [12, 12, 12, 12] for each block.
    - After sorting by expert index, we obtain token_ids [3, 6, 9, 12, 0, 4, 10, 12, 1, 7, 11, 12, 2, 5, 8, 12].
        Tokens 12 are non-existent (padding) and are ignored in the subsequent matrix multiplication.
    - The padding ensures that the total number of tokens is now divisible by block_size for proper block matrix operations.
    """
    sorted_ids = torch.empty(
        (topk_ids.numel() + num_experts * (block_size - 1),),
        dtype=torch.int32,
        device=topk_ids.device,
    )
    expert_ids = torch.empty(
        (topk_ids.numel() + num_experts,), dtype=torch.int32, device=topk_ids.device
    )
    sorted_ids.fill_(topk_ids.numel())
    num_tokens_post_pad = torch.empty((1), dtype=torch.int32, device=topk_ids.device)
    awq_ext.moe_alig_block_size(
        topk_ids, num_experts, block_size, sorted_ids, expert_ids, num_tokens_post_pad
    )
    return sorted_ids, expert_ids, num_tokens_post_pad


def fused_topk(
    gating_output: torch.Tensor,
    topk: int,
    renormalize: bool,
):
    """Compute top-k indice and weights from gating logits

    Args:
        gating_output (torch.Tensor): The output of the gating operation (before softmax).
        topk (int): The number of top-k experts to select.
        renormalize (bool): If True, renormalize the top-k weights to sum to 1.
    """
    M = gating_output.shape[0]
    if torch.version.hip is not None:
        # The MoE kernels are not yet supported on ROCm.
        routing_weights = torch.softmax(gating_output, dim=-1, dtype=torch.float32)
        topk_weights, topk_ids = torch.topk(routing_weights, topk, dim=-1)
    else:
        topk_weights = torch.empty(
            M, topk, dtype=torch.float32, device=gating_output.device
        )
        topk_ids = torch.empty(M, topk, dtype=torch.int32, device=gating_output.device)
        token_expert_indicies = torch.empty(
            M, topk, dtype=torch.int32, device=gating_output.device
        )
        awq_ext.topk_softmax(
            topk_weights,
            topk_ids,
            token_expert_indicies,
            gating_output.float(),  # TODO(woosuk): Optimize this.
        )
        del token_expert_indicies  # Not used. Will be used in the future.
    if renormalize:
        topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
    return topk_weights, topk_ids