starcoder2.py 4.63 KB
Newer Older
少年's avatar
少年 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import tqdm
from typing import List, Tuple
from .base import BaseAWQForCausalLM
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.starcoder2.modeling_starcoder2 import (
    Starcoder2ForCausalLM as OldStarcoder2ForCausalLM,
    Starcoder2DecoderLayer as OldStarcoder2DecoderLayer,
)
from awq.modules.fused.norm import FasterTransformerRMSNorm


class Starcoder2AWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "Starcoder2DecoderLayer"
    max_seq_len_key = "max_position_embeddings"

    @staticmethod
    def fuse_layers(model: OldStarcoder2ForCausalLM):
        fuser = Starcoder2Fuser(model)
        fuser.fuse_transformer()

    @staticmethod
    def get_model_layers(model: OldStarcoder2ForCausalLM):
        return model.model.layers

    @staticmethod
    def get_act_for_scaling(module: OldStarcoder2DecoderLayer):
        return dict(
            is_scalable=True,
            scale_name="mlp.act",
            scale_layer=module.mlp.act,
            scale_shape=module.mlp.c_fc.out_features,
        )
        # return dict(is_scalable=False)

    @staticmethod
    def move_embed(model: OldStarcoder2ForCausalLM, device):
        model.model.embed_tokens = model.model.embed_tokens.to(device)

    @staticmethod
    def get_layers_for_scaling(module: OldStarcoder2DecoderLayer, input_feat, module_kwargs):
        layers = []

        # attention input
        layers.append(
            dict(
                prev_op=module.input_layernorm,
                layers=[
                    module.self_attn.q_proj,
                    module.self_attn.k_proj,
                    module.self_attn.v_proj,
                ],
                inp=input_feat["self_attn.q_proj"],
                module2inspect=module.self_attn,
                kwargs=module_kwargs,
            )
        )

        # attention out
        if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
            layers.append(
                dict(
                    prev_op=module.self_attn.v_proj,
                    layers=[module.self_attn.o_proj],
                    inp=input_feat["self_attn.o_proj"],
                )
            )

        # linear 1
        layers.append(
            dict(
                prev_op=module.post_attention_layernorm,
                layers=[module.mlp.c_fc],
                inp=input_feat["mlp.c_fc"],
                module2inspect=module.mlp,
            )
        )

        # linear 2
        layers.append(
            dict(
                prev_op=module.mlp.act,
                layers=[module.mlp.c_proj],
                inp=input_feat["mlp.c_proj"],
            )
        )

        return layers

class Starcoder2Fuser:
    def __init__(self, model: OldStarcoder2ForCausalLM):
        self.model = model

        self.starcoder2_blocks: List[Tuple[str, OldStarcoder2DecoderLayer]] = [
            (name, module)
            for name, module in self.model.named_modules()
            if "Starcoder2DecoderLayer".lower() in module.__class__.__name__.lower()
        ]

    def fuse_transformer(self):
        blocks = []

        module: OldStarcoder2DecoderLayer
        for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
            device = next(iter(module.state_dict().values())).device
            qkv = fuse_qkv(
                module,
                module.self_attn.q_proj,
                module.self_attn.k_proj,
                module.self_attn.v_proj,
            )
            norm_1 = FasterTransformerRMSNorm(
                module.input_layernorm.weight, module.input_layernorm.eps
            )
            norm_2 = FasterTransformerRMSNorm(
                module.post_attention_layernorm.weight,
                module.post_attention_layernorm.eps,
            )
            blocks.append(
                LlamaLikeBlock(
                    hidden_size=self.model.config.hidden_size,
                    n_heads=self.model.config.num_attention_heads,
                    n_kv_heads=self.model.config.num_key_value_heads,
                    qkv_layer=qkv,
                    o_proj=module.self_attn.o_proj,
                    mlp=module.mlp,
                    norm_1=norm_1,
                    norm_2=norm_2,
                    dev=device,
                    max_seq_len=self.model.config.max_seq_len,
                )
            )

        self.model.model = LlamaLikeModel(
            self.model.config.vocab_size,
            blocks,
            self.model.model.embed_tokens,
            self.model.model.norm,
        )
        setattr(self.model.model, "blocks", self.model.model.blocks)