opt.py 1.77 KB
Newer Older
Casper Hansen's avatar
Casper Hansen committed
1
2
3
4
5
from .base import BaseAWQForCausalLM
from transformers.models.opt.modeling_opt import OPTForCausalLM, OPTDecoderLayer

class OptAWQForCausalLM(BaseAWQForCausalLM):
    layer_type = "OPTDecoderLayer"
6
    max_new_tokens_key = "max_position_embeddings"
Casper Hansen's avatar
Casper Hansen committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

    @staticmethod
    def get_model_layers(model: OPTForCausalLM):
        return model.model.decoder.layers
    
    @staticmethod
    def get_act_for_scaling(module: OPTDecoderLayer):
        return dict(
            is_scalable=False
        )
    
    @staticmethod
    def move_embed(model: OPTForCausalLM, device: str):
        model.model.decoder.embed_tokens = model.model.decoder.embed_tokens.to(device)
        model.model.decoder.embed_positions = model.model.decoder.embed_positions.to(device)
    
    @staticmethod
    def get_layers_for_scaling(module: OPTDecoderLayer, input_feat, module_kwargs):
        layers = []

        # attention input
        layers.append(dict(
            prev_op=module.self_attn_layer_norm,
Casper Hansen's avatar
Casper Hansen committed
30
31
32
            layers=[
                module.self_attn.q_proj,
                module.self_attn.k_proj, module.self_attn.v_proj],
Casper Hansen's avatar
Casper Hansen committed
33
            inp=input_feat['self_attn.q_proj'],
Casper Hansen's avatar
Casper Hansen committed
34
35
            module2inspect=module.self_attn, 
            kwargs=module_kwargs,
Casper Hansen's avatar
Casper Hansen committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        ))

        # attention out
        layers.append(dict(
            prev_op=module.self_attn.v_proj,
            layers=[module.self_attn.out_proj],
            inp=input_feat['self_attn.out_proj'],
        ))

        # linear 1
        layers.append(dict(
            prev_op=module.final_layer_norm,
            layers=[module.fc1],
            inp=input_feat['fc1'],
        ))

        # linear 2
        layers.append(dict(
            prev_op=module.fc1,
            layers=[module.fc2],
            inp=input_feat['fc2'],
        ))

        return layers