attn.py 9.12 KB
Newer Older
Casper Hansen's avatar
Casper Hansen committed
1
import math
Haotian Tang's avatar
Haotian Tang committed
2
3
4
import torch
import torch.nn as nn
import awq_inference_engine
Casper Hansen's avatar
Casper Hansen committed
5
from torch.nn import functional as F
Casper Hansen's avatar
Casper Hansen committed
6

Casper Hansen's avatar
Casper Hansen committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return freqs_cis

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(*shape)

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
):
    xq_ = torch.view_as_complex(
        xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    xk_ = torch.view_as_complex(
        xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)

Casper Hansen's avatar
Casper Hansen committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def gen_slopes(n_heads, alibi_bias_max=8):
    _n_heads = 2 ** math.ceil(math.log2(n_heads))
    m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
    m = m.mul(alibi_bias_max / _n_heads)
    slopes = 1.0 / torch.pow(2, m)
    if _n_heads != n_heads:
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
    return slopes.view(1, n_heads, 1, 1)


def build_alibi_bias(
    n_heads, seq_len, full=False, alibi_bias_max=8, dtype=torch.float32
):
    alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
    if full:
        alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32).view(
            1, 1, seq_len, 1
        )
        alibi_bias = alibi_bias.abs().mul(-1)
    slopes = gen_slopes(n_heads, alibi_bias_max)
    alibi_bias = alibi_bias * slopes
    slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
    return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)

Haotian Tang's avatar
Haotian Tang committed
61
62
63
64
65
66
67
68

class QuantLlamaRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()

        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
Casper Hansen's avatar
Casper Hansen committed
69
70
71
        inv_freq = 1.0 / (
            self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
        )
Haotian Tang's avatar
Haotian Tang committed
72
73
74
        self.register_buffer("inv_freq", inv_freq)
        # Build here to make `torch.jit.trace` work.
        self._set_cos_sin_cache(
Casper Hansen's avatar
Casper Hansen committed
75
76
77
            seq_len=max_position_embeddings,
            device=self.inv_freq.device,
            dtype=torch.get_default_dtype(),
Haotian Tang's avatar
Haotian Tang committed
78
79
80
81
        )

    def _set_cos_sin_cache(self, seq_len, device, dtype):
        self.max_seq_len_cached = seq_len
Casper Hansen's avatar
Casper Hansen committed
82
83
84
        t = torch.arange(
            self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
        )
Haotian Tang's avatar
Haotian Tang committed
85
86
87
88

        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
Casper Hansen's avatar
Casper Hansen committed
89

Haotian Tang's avatar
Haotian Tang committed
90
91
92
        cos = freqs.cos()
        sin = freqs.sin()
        cache = torch.cat((cos, sin), dim=-1)
Casper Hansen's avatar
Casper Hansen committed
93

Haotian Tang's avatar
Haotian Tang committed
94
        self.register_buffer("cos_sin_cache", cache.half(), persistent=False)
Casper Hansen's avatar
Casper Hansen committed
95

Haotian Tang's avatar
Haotian Tang committed
96
97
98
99
100
101
102
103
    def forward(
        self,
        query: torch.Tensor,
        key: torch.Tensor,
        positions: torch.Tensor,
    ):
        # Apply rotary embedding to the query and key before passing them
        # to the attention op.
Casper Hansen's avatar
Casper Hansen committed
104
        # print(positions.shape, query.shape, key.shape, self.cos_sin_cache.shape)
Haotian Tang's avatar
Haotian Tang committed
105
106
        query = query.contiguous()
        key = key.contiguous()
107
        awq_inference_engine.rotary_embedding_neox(
Haotian Tang's avatar
Haotian Tang committed
108
109
110
111
            positions,
            query,
            key,
            self.dim,
112
            self.cos_sin_cache
Haotian Tang's avatar
Haotian Tang committed
113
114
115
        )
        return query, key

Casper Hansen's avatar
Casper Hansen committed
116
117
class QuantAttentionFused(nn.Module):
    def __init__(self, hidden_size, num_heads, qkv_layer, o_proj, dev, max_seq_len, use_alibi=False):
Casper Hansen's avatar
Casper Hansen committed
118
119
120
121
122
123
124
        super().__init__()
        self.hidden_size = hidden_size
        self.n_local_heads = num_heads
        self.head_dim = self.hidden_size // num_heads
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
Casper Hansen's avatar
Casper Hansen committed
125
126
        self.use_alibi = use_alibi
        self.cache_batch_size = 1
Casper Hansen's avatar
Casper Hansen committed
127

Casper Hansen's avatar
Casper Hansen committed
128
129
130
        # following fastertransformer definition
        self.cache_v = (
            torch.zeros(
Casper Hansen's avatar
Casper Hansen committed
131
                ( self.cache_batch_size, self.n_local_heads, max_seq_len, self.head_dim, )
132
133
134
            ).to(dev).half()
        )
        
Casper Hansen's avatar
Casper Hansen committed
135
136
137
        # 8: pack 8 fp16 in FT, if fp32 then use 4
        self.cache_k = (
            torch.zeros(
Casper Hansen's avatar
Casper Hansen committed
138
                ( self.cache_batch_size, self.n_local_heads, self.head_dim // 8, max_seq_len, 8, )
139
140
            ).to(dev).half()
        )
141

Casper Hansen's avatar
Casper Hansen committed
142
143
144
145
146
        if use_alibi:
            alibi_slopes, alibi_bias = build_alibi_bias(self.n_local_heads, max_seq_len)
            self.alibi_slopes = alibi_slopes.float().to(dev)
            self.alibi_bias = alibi_bias.float().to(dev)
            self.rotary_dim = 0
147
            self.is_neox = False
Casper Hansen's avatar
Casper Hansen committed
148
149
150
151
152
        else:
            self.freqs_cis = precompute_freqs_cis(
                hidden_size // num_heads,
                max_seq_len * 2,
            ).to(dev)
153
            self.rotary_dim = self.head_dim
Casper Hansen's avatar
Casper Hansen committed
154
            self.alibi_slopes = None
155
            self.is_neox = True
156
    
Casper Hansen's avatar
Casper Hansen committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    def _multi_query_attention_torch(self, query, key, value, batch_size, seqlen, use_cache, past_key_value, attention_mask):
        query = query.view(batch_size, seqlen, self.n_local_heads, self.head_dim).transpose(1, 2)
        key = key.view(batch_size, seqlen, self.n_local_heads, self.head_dim).transpose(1, 2)
        value = value.view(batch_size, seqlen, self.n_local_heads, self.head_dim).transpose(1, 2)

        if use_cache:
            key = key.contiguous()
            value = value.contiguous()
            query = query.contiguous()

        output = F.scaled_dot_product_attention(
            query, key, value, 
            is_causal=past_key_value is None, 
            attn_mask=attention_mask)
        

        del query, key, value

        output = output.transpose(1, 2).reshape(batch_size, seqlen, self.hidden_size)

        return output
    
Casper Hansen's avatar
Casper Hansen committed
179
180
181
182
183
184
185
186
187
188
    def forward(
        self,
        hidden_states, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False
    ):
        bsz, seqlen, _ = hidden_states.shape
        xqkv = self.qkv_proj(hidden_states)
        xqkv = xqkv.view(bsz, seqlen, -1, self.n_local_heads, self.head_dim)
        xq = xqkv[:, :, 0]
        xk = xqkv[:, :, 1]
        xv = xqkv[:, :, 2]
Haotian Tang's avatar
Haotian Tang committed
189

Casper Hansen's avatar
Casper Hansen committed
190
191
192
193
        if seqlen > 1:
            xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
            xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
            xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
Haotian Tang's avatar
Haotian Tang committed
194

195
196
            if not self.use_alibi:
                xq, xk = apply_rotary_emb(xq, xk, freqs_cis=self.freqs_cis[self.start_pos : self.start_pos + seqlen])
Haotian Tang's avatar
Haotian Tang committed
197

Casper Hansen's avatar
Casper Hansen committed
198
199
            self.cache_k = self.cache_k.to(xq)
            self.cache_v = self.cache_v.to(xq)
Haotian Tang's avatar
Haotian Tang committed
200

Casper Hansen's avatar
Casper Hansen committed
201
202
203
204
205
206
            values_store = xv.transpose(2, 1)
            keys_store = (
                xk.reshape(bsz, seqlen, self.n_local_heads, self.head_dim // 8, 8)
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
Haotian Tang's avatar
Haotian Tang committed
207

Casper Hansen's avatar
Casper Hansen committed
208
209
210
211
            self.cache_v[:bsz, :, self.start_pos : self.start_pos + seqlen, :] = values_store
            self.cache_k[:bsz, :, :, self.start_pos : self.start_pos + seqlen, :] = keys_store

            past_key_value = (xk, xv) if use_cache else None
Casper Hansen's avatar
Casper Hansen committed
212
213
214
215
216
            output = self._multi_query_attention_torch(
                xq, xk, xv, 
                bsz, seqlen, True, 
                past_key_value, attention_mask
            )
Casper Hansen's avatar
Casper Hansen committed
217
218
219
220
221
222
        else:
            xq = xq[:, 0, :, :]
            xk = xk[:, 0, :, :]
            xv = xv[:, 0, :, :]
            past_key_value = (xk, xv) if use_cache else None
            output = awq_inference_engine.single_query_attention(
Casper Hansen's avatar
Casper Hansen committed
223
224
225
226
227
228
229
230
231
232
                xq, # query
                xk, # key
                xv, # value
                self.cache_k, # key cache
                self.cache_v, # value cache
                None, # length per sample
                self.alibi_slopes, # alibi slopes
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
233
                self.is_neox, # is neox
Casper Hansen's avatar
Casper Hansen committed
234
235
236
237
238
239
240
241
242
            )
            output = output.reshape(bsz, 1, -1)
        
        attn_output = self.o_proj(output)
        
        if use_cache:
            self.start_pos += seqlen
        else:
            self.start_pos = 0
Haotian Tang's avatar
Haotian Tang committed
243

Casper Hansen's avatar
Casper Hansen committed
244
        return attn_output, None, past_key_value