gemm_cuda_gen.cu 23.6 KB
Newer Older
Haotian Tang's avatar
Haotian Tang committed
1
2
3
4
5
6
7
8
9
10
11
/*

@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}

 */

12
13
14
15
16
#ifdef _MSC_VER
#define ASM __asm
#else
#define ASM asm volatile
#endif
Haotian Tang's avatar
Haotian Tang committed
17

Ji Lin's avatar
Ji Lin committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
#include <torch/extension.h>
#include "gemm_cuda.h"
#include "dequantize.cuh"
#include <cuda_fp16.h>
#include <c10/cuda/CUDAGuard.h>


// Pack two half values.
static inline __device__ __host__ unsigned
__pack_half2(const half x, const half y) {
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
  return (v1 << 16) | v0;
}

33
__global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n128k32(int G, int split_k_iters, half* __restrict__ A, int* __restrict__ B, half* __restrict__ scaling_factors, int* __restrict__ zeros, int M, int IC, int OC, half* __restrict__ C) 
Ji Lin's avatar
Ji Lin committed
34
35
36
37
38
39
40
41
42
43
{
  static constexpr uint32_t ZERO = 0x0;
  float C_warp[32];
  __shared__ half A_shared[16 * (32 + 8)];
  __shared__ half B_shared[32 * (128 + 8)];
  
  __shared__ half scaling_factors_shared[128];
  __shared__ half zeros_shared[128];

  int j_factors1 = ((OC + 128 - 1) / 128);
44
45
46
47
  int blockIdx_x = 0;
  int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
  int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);

Ji Lin's avatar
Ji Lin committed
48
49
50
51
52
53
54
55
56
57
58
  half A_shared_warp[8];
  half B_shared_warp[32];
  for (int j_0_4_init = 0; j_0_4_init < 4; ++j_0_4_init) {
    for (int i = 0; i < 8; ++i) {
      C_warp[(j_0_4_init * 8) + i] = 0.0;
    }
  }

  static constexpr int row_stride_warp = 32 * 8 / 32;
  static constexpr int row_stride = 2 * 32 * 8 / 128;
  bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < 128;
59
60
  // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
  bool ld_A_flag = (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32) < M;     // threadIdx.y is warp_id
Ji Lin's avatar
Ji Lin committed
61
62
63
  // bool wb_C_flag = (threadIdx.x / 4) < M;

  half* A_ptr = A 
64
                + (((int)blockIdx_y) / j_factors1 * 16 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
Ji Lin's avatar
Ji Lin committed
65
66
67
68
69
                + (((int)threadIdx.x) % (32 / 8)) * 8;
  
  int* B_ptr = B
            + ((int)threadIdx.y) * (OC / 8) * 2
            + (((int)threadIdx.x) / (128 / 8)) * (OC / 8)
70
            + (((int)blockIdx_y) % j_factors1) * (128 / 8)
Ji Lin's avatar
Ji Lin committed
71
            + (((int)threadIdx.x) % (128 / 8)) * 1;
72
// Why * 1 in the above line?
Ji Lin's avatar
Ji Lin committed
73
74
75
76
77
78
79
80
81
82
83
84
                        
  half* A_shared_ptr = A_shared 
                    + ((int)threadIdx.y) * row_stride_warp * (32 + 8) 
                    + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
                    + (((int)threadIdx.x) % (32 / 8) ) * 8;

  half* B_shared_ptr = B_shared
                    + ((int)threadIdx.y) * (row_stride / 2) * (128 + 8)
                    + (((int)threadIdx.x) / (128 / 8)) * (128 + 8)
                    + (((int)threadIdx.x) % (128 / 8)) * 8;
  
  int* zeros_ptr = zeros
85
                + (((int)blockIdx_y) % j_factors1) * (128 / 8)
Ji Lin's avatar
Ji Lin committed
86
87
88
                + ((int)threadIdx.x) % (128 / 8);
  
  half* scaling_factors_ptr = scaling_factors
89
                            + (((int)blockIdx_y) % j_factors1) * (128) 
Ji Lin's avatar
Ji Lin committed
90
91
92
                            + (((int)threadIdx.x) % (128 / 8)) * 8;

  half* C_ptr = C 
93
94
              + blockIdx_z * M * OC        // blockIdz.x -> split_k dim
              + (((int)blockIdx_y) % j_factors1) * 128
Ji Lin's avatar
Ji Lin committed
95
96
97
98
99
              + ((int)threadIdx.y) * 64
              + (((int)threadIdx.x) % 4) * 2;

  // preload s.f. and zeros
  int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
100
  if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
Ji Lin's avatar
Ji Lin committed
101
  for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
102
    int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
Ji Lin's avatar
Ji Lin committed
103
    __syncthreads();
104
    // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
Ji Lin's avatar
Ji Lin committed
105
106
107
108
109
110
111
112
113
114
    if (ld_A_flag)
    {
      *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
    }
    else
    {
      *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
    }

    // for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
115
    uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
Ji Lin's avatar
Ji Lin committed
116
    uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
117
    uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
Ji Lin's avatar
Ji Lin committed
118
    /*
119
    if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 && threadIdx.y == 0){
Ji Lin's avatar
Ji Lin committed
120
121
122
123
124
125
126
127
128
129
130
      printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x, B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x, B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
    }
    */
    // uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
    int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);

    for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 8; ++ax0_ax1_fused_0) {

      // B: 32 x 136 (128+8) float16
      // each warp: 32 x 4
      // each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
131
      // *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) * 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15) * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 * 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) * 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) * 8)));
Ji Lin's avatar
Ji Lin committed
132
133
134
135
136
137
138
139
      // row stride in shared memory: (NWARPS * 32 * 8 / cta_N) 
      uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
      uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
      //uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N / 8)) * 8);

      // uint4 B_loaded_scale = *(uint4*)(scaling_factors_shared + (threadIdx.x % (cta_N / 8)) * 8);
      // - zero and * scale
      // TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
140
141
142
143
144
145
146
147
      ASM("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
      ASM("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
      ASM("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
      ASM("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
      ASM("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
      ASM("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
      ASM("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
      ASM("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
Ji Lin's avatar
Ji Lin committed
148
      /*
149
      if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 17 && threadIdx.y == 0){
Ji Lin's avatar
Ji Lin committed
150
151
152
153
154
155
156
157
158
159
160
161
        printf("[x] %X %X %X %X\n", B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
      }
      */

      // write back
      *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (128 + 8)) = B_loaded_fp16;
    }
    __syncthreads();

    for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) {
      {
        unsigned int addr;
162
        ASM(
Ji Lin's avatar
Ji Lin committed
163
164
165
166
167
168
          "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
          : "=r"(addr)
          : "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
        );


169
        ASM(
Ji Lin's avatar
Ji Lin committed
170
171
172
173
174
175
176
177
178
179
          "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
          "{%0, %1, %2, %3}, [%4];\n"
          : "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
          : "r"(addr)
        );
      }

      for (int ax1_0 = 0; ax1_0 < 4; ++ax1_0) {
        {
          unsigned int addr;
180
          ASM(
Ji Lin's avatar
Ji Lin committed
181
182
183
184
            "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
            : "=r"(addr)
            : "l"((void *)((&(B_shared[(((k_0_1 * 2176) + (((int)threadIdx.y) * 64)) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * 136) + ((((int)threadIdx.x) >> 4) * 8))))
          );
185
          ASM(
Ji Lin's avatar
Ji Lin committed
186
187
188
189
190
191
192
193
194
            "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
            "{%0, %1, %2, %3}, [%4];\n"
            : "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
            : "r"(addr)
          );
        }
      }
      for (int j_0_4 = 0; j_0_4 < 4; ++j_0_4) {
        {
195
          ASM(
Ji Lin's avatar
Ji Lin committed
196
197
198
199
200
201
202
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
203
          ASM(
Ji Lin's avatar
Ji Lin committed
204
205
206
207
208
209
210
211
212
213
214
215
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }
      }
    }
  }

// TODO: Shang: Hoist loop invariance.
  for (int ax1_0_1 = 0; ax1_0_1 < 4; ++ax1_0_1) {
    for (int local_id = 0; local_id < 8; ++local_id) {
216
      int row_offset = (((int)blockIdx_y) / j_factors1) * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
Ji Lin's avatar
Ji Lin committed
217
218
219
220
221
222
223
224
      if (row_offset < M)
      {
        *(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
      }
    }
  }
}

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

__global__ void __launch_bounds__(64) gemm_forward_4bit_cuda_m16n64k32(int G, int split_k_iters, half* __restrict__ A, int* __restrict__ B, half* __restrict__ scaling_factors, int* __restrict__ zeros, int M, int IC, int OC, half* __restrict__ C) 
{
  static constexpr uint32_t ZERO = 0x0;
  float C_warp[32];
  __shared__ half A_shared[16 * (32 + 8)];
  __shared__ half B_shared[32 * (64 + 8)];
  
  __shared__ half scaling_factors_shared[64];
  __shared__ half zeros_shared[64];

  int j_factors1 = ((OC + 64 - 1) / 64);

  int blockIdx_x = 0;
  int blockIdx_y = blockIdx.x % ((M + 16 - 1) / 16 * j_factors1);
  int blockIdx_z = blockIdx.x / ((M + 16 - 1) / 16 * j_factors1);

  half A_shared_warp[8];
  half B_shared_warp[16];
  for (int j_0_4_init = 0; j_0_4_init < 2; ++j_0_4_init) {
    for (int i = 0; i < 8; ++i) {
      C_warp[(j_0_4_init * 8) + i] = 0.0;
    }
  }

  static constexpr int row_stride_warp = 32 * 8 / 32;
  static constexpr int row_stride = 2 * 32 * 8 / 64;
  bool ld_zero_flag = (threadIdx.y * 32 + threadIdx.x) * 8 < 64;
  // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
  bool ld_A_flag = (blockIdx_y / j_factors1 * 16 + threadIdx.y * row_stride_warp + threadIdx.x * 8 / 32) < M;     // threadIdx.y is warp_id
  // bool wb_C_flag = (threadIdx.x / 4) < M;

  half* A_ptr = A 
                + (((int)blockIdx_y) / j_factors1 * 16 + (((int)threadIdx.y) * row_stride_warp) + ((int)threadIdx.x) / (32 / 8)) * IC
                + (((int)threadIdx.x) % (32 / 8)) * 8;
  
  int* B_ptr = B
            + ((int)threadIdx.y) * (OC / 8) * 4
            + (((int)threadIdx.x) / (64 / 8)) * (OC / 8)
            + (((int)blockIdx_y) % j_factors1) * (64 / 8)
            + (((int)threadIdx.x) % (64 / 8)) * 1;
// Why * 1 in the above line?
                        
  half* A_shared_ptr = A_shared 
                    + ((int)threadIdx.y) * row_stride_warp * (32 + 8) 
                    + (((int)threadIdx.x) / (32 / 8)) * (32 + 8)
                    + (((int)threadIdx.x) % (32 / 8) ) * 8;

  half* B_shared_ptr = B_shared
                    + ((int)threadIdx.y) * (row_stride / 2) * (64 + 8)
                    + (((int)threadIdx.x) / (64 / 8)) * (64 + 8)
                    + (((int)threadIdx.x) % (64 / 8)) * 8;
  
  int* zeros_ptr = zeros
                + (((int)blockIdx_y) % j_factors1) * (64 / 8)
                + ((int)threadIdx.x) % (64 / 8);
  
  half* scaling_factors_ptr = scaling_factors
                            + (((int)blockIdx_y) % j_factors1) * (64) 
                            + (((int)threadIdx.x) % (64 / 8)) * 8;

  half* C_ptr = C 
              + blockIdx_z * M * OC        // blockIdz.x -> split_k dim
              + (((int)blockIdx_y) % j_factors1) * 64
              + ((int)threadIdx.y) * 32
              + (((int)threadIdx.x) % 4) * 2;

  // preload s.f. and zeros
  int k_bound = (IC / 32 + split_k_iters - 1) / split_k_iters;
  if ((k_bound - 1) * split_k_iters * 32 + blockIdx_z * 32 >= IC) k_bound -= 1;
  for (int _k_0_0 = 0; _k_0_0 < k_bound; ++_k_0_0) {
    int k_0_0 = _k_0_0 * split_k_iters + blockIdx_z;
    __syncthreads();
    // TODO: Haotian: blockIdx_y / j_factors1 in A loading to support bsz > 16
    if (ld_A_flag)
    {
      *(uint4*)(A_shared_ptr) = *(uint4*)(A_ptr + (k_0_0 * 32));
    }
    else
    {
      *(uint4*)(A_shared_ptr) = make_uint4(0, 0, 0, 0);
    }

    // for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 2; ++ax0_ax1_fused_0) {
    uint32_t zeros_loaded = *(uint32_t*)(zeros_ptr + k_0_0 * 32 / G * (OC / 8));
    uint4 B_loaded_zero = dequantize_s4_to_fp16x2(zeros_loaded);
    uint4 B_loaded_scale = *(uint4*)(scaling_factors_ptr + k_0_0 * 32 / G * (OC));
    /*
    if (blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 0 && threadIdx.y == 0){
      printf("%x %x %x %x %x %x %x %x\n", B_loaded_scale.x, B_loaded_scale.y, B_loaded_scale.z, B_loaded_scale.w, B_loaded_zero.x, B_loaded_zero.y, B_loaded_zero.z, B_loaded_zero.w);
    }
    */
    // uint4 B_loaded_scale = make_uint4(0, 0, 0, 0);
    int* B_ptr_local = B_ptr + k_0_0 * 32 * (OC / 8);

    for (int ax0_ax1_fused_0 = 0; ax0_ax1_fused_0 < 4; ++ax0_ax1_fused_0) {

      // B: 32 x 136 (128+8) float16
      // each warp: 32 x 4
      // each thr: read 32 bit -> convert to 8xFP16 (a UINT4) -> scale and minus zero -> WB UINT4
      // *(uint4*)(B_shared + ((((ax0_ax1_fused_0 * 544) + (((int)threadIdx.y) * 272)) + ((((int)threadIdx.x) >> 4) * 136)) + ((((int)threadIdx.x) & 15) * 8))) = *(uint4*)(B + ((((((k_0_0 * 163840) + (ax0_ax1_fused_0 * 20480)) + (((int)threadIdx.y) * 10240)) + ((((int)threadIdx.x) >> 4) * 5120)) + (((int)blockIdx_y) * 128)) + ((((int)threadIdx.x) & 15) * 8)));
      // row stride in shared memory: (NWARPS * 32 * 8 / cta_N) 
      uint32_t B_loaded = *(uint32_t*)(B_ptr_local + ax0_ax1_fused_0 * row_stride * (OC / 8));
      uint4 B_loaded_fp16 = dequantize_s4_to_fp16x2(B_loaded);
      //uint4 B_loaded_zero = *(uint4*)(zeros_shared + (threadIdx.x % (cta_N / 8)) * 8);

      // uint4 B_loaded_scale = *(uint4*)(scaling_factors_shared + (threadIdx.x % (cta_N / 8)) * 8);
      // - zero and * scale
      // TODO (Haotian): can save 4 assembly instructions if sormulate as deq = q * scale - zero * scale.
334
335
336
337
338
339
340
341
      ASM("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_zero.x));
      ASM("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.x) : "r"(B_loaded_fp16.x), "r"(B_loaded_scale.x), "r"(ZERO));
      ASM("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_zero.y));
      ASM("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.y) : "r"(B_loaded_fp16.y), "r"(B_loaded_scale.y), "r"(ZERO));
      ASM("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_zero.z));
      ASM("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.z) : "r"(B_loaded_fp16.z), "r"(B_loaded_scale.z), "r"(ZERO));
      ASM("sub.f16x2 %0, %1, %2;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_zero.w));
      ASM("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(B_loaded_fp16.w) : "r"(B_loaded_fp16.w), "r"(B_loaded_scale.w), "r"(ZERO));
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
      /*
      if (ax0_ax1_fused_0 == 0 && blockIdx_z == 0 && blockIdx_y == 0 && k_0_0 == 0 && threadIdx.x == 17 && threadIdx.y == 0){
        printf("[x] %X %X %X %X\n", B_loaded_fp16.x, B_loaded_fp16.y, B_loaded_fp16.z, B_loaded_fp16.w);
      }
      */

      // write back
      *(uint4*)(B_shared_ptr + ax0_ax1_fused_0 * row_stride * (64 + 8)) = B_loaded_fp16;
    }
    __syncthreads();

    for (int k_0_1 = 0; k_0_1 < 2; ++k_0_1) 
    {
      {
        unsigned int addr;
357
        ASM(
358
359
360
361
          "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
          : "=r"(addr)
          : "l"((void *)((&(A_shared[(k_0_1 * 16)])) + (((((int)threadIdx.x) & 15) * 40) + ((((int)threadIdx.x) >> 4) * 8))))
        );
362
        ASM(
363
364
365
366
367
368
369
370
371
372
373
374
          "ldmatrix.sync.aligned.m8n8.x4.shared.b16"
          "{%0, %1, %2, %3}, [%4];\n"
          : "=r"(((unsigned *)(A_shared_warp + 0))[0]), "=r"(((unsigned *)(A_shared_warp + 0))[1]), "=r"(((unsigned *)(A_shared_warp + 0))[2]), "=r"(((unsigned *)(A_shared_warp + 0))[3])
          : "r"(addr)
        );
      }
        

      for (int ax1_0 = 0; ax1_0 < 2; ++ax1_0) 
      {
        {
          unsigned int addr;
375
          ASM(
376
377
378
379
            "{ .reg .u64 addr; cvta.to.shared.u64 addr, %1; cvt.u32.u64 %0, addr; }\n"
            : "=r"(addr)
            : "l"((void *)((&(B_shared[(((k_0_1 * 1152) + (((int)threadIdx.y) * 32)) + (ax1_0 * 16))])) + (((((int)threadIdx.x) & 15) * 72) + ((((int)threadIdx.x) >> 4) * 8))))
          );
380
          ASM(
381
382
383
384
385
386
387
388
389
390
391
392
            "ldmatrix.sync.aligned.m8n8.x4.trans.shared.b16"
            "{%0, %1, %2, %3}, [%4];\n"
            : "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[0]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[1]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[2]), "=r"(((unsigned *)(B_shared_warp + (ax1_0 * 8)))[3])
            : "r"(addr)
          );
        }
      }
      
      for (int j_0_4 = 0; j_0_4 < 2; ++j_0_4) 
      {

        {
393
          ASM(
394
395
396
397
398
399
400
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "=f"(((float *)(C_warp + (j_0_4 * 8)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[0]), "r"(((unsigned *)(B_shared_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[0]), "f"(((float *)(C_warp + (j_0_4 * 8)))[1]), "f"(((float *)(C_warp + (j_0_4 * 8)))[2]), "f"(((float *)(C_warp + (j_0_4 * 8)))[3]));
        }

        {
401
          ASM(
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
            "mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32"
            "{%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%10, %11, %12, %13};\n"
            :  "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "=f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3])
            : "r"(((unsigned *)(A_shared_warp + 0))[0]), "r"(((unsigned *)(A_shared_warp + 0))[1]), "r"(((unsigned *)(A_shared_warp + 0))[2]), "r"(((unsigned *)(A_shared_warp + 0))[3]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[0]), "r"(((unsigned *)(B_shared_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[0]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[1]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[2]), "f"(((float *)(C_warp + ((j_0_4 * 8) + 4)))[3]));
        }
      }
    }
  }

// TODO: Shang: Hoist loop invariance.
  for (int ax1_0_1 = 0; ax1_0_1 < 2; ++ax1_0_1) {
    for (int local_id = 0; local_id < 8; ++local_id) {
      int row_offset = (((int)blockIdx_y) / j_factors1) * 16 + ((int)threadIdx.x) / 4 + (local_id % 4) / 2 * 8;
      if (row_offset < M)
      {
        *(C_ptr + ax1_0_1 * 16 + row_offset * OC + (local_id / 4) * 8 + local_id % 2) = __float2half(C_warp[(ax1_0_1 * 8) + local_id]);
      }
    }
  }
}

Ji Lin's avatar
Ji Lin committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
// in_feats: M, IC [float16]
// kernel: IC, OC // 8 [int32] -> cast to IC, OC [uint4b]
// scaling_factors: IC // G, OC [float16]
// zeros: IC // G, OC // 8 [int32] -> cast to IC // G, OC [uint4b]
// assume that batch_size < 16 for now

torch::Tensor gemm_forward_cuda(
    torch::Tensor _in_feats,
    torch::Tensor _kernel,
    torch::Tensor _scaling_factors,
    torch::Tensor _zeros,
    int split_k_iters)
{
    int num_in_feats = _in_feats.size(0);
    int num_in_channels = _in_feats.size(1);
    const at::cuda::OptionalCUDAGuard device_guard(device_of(_in_feats));

    auto options = torch::TensorOptions().dtype(_in_feats.dtype()).device(_in_feats.device());
    at::Tensor _out_feats = torch::empty({split_k_iters, num_in_feats, _kernel.size(1) * 8}, options);
    int num_out_feats = _out_feats.size(-2);
    int num_out_channels = _out_feats.size(-1);

    auto in_feats = reinterpret_cast<half*>(_in_feats.data_ptr<at::Half>());
    auto kernel = reinterpret_cast<int*>(_kernel.data_ptr<int>());
    auto out_feats = reinterpret_cast<half*>(_out_feats.data_ptr<at::Half>());
    auto scaling_factors = reinterpret_cast<half*>(_scaling_factors.data_ptr<at::Half>());
    auto zeros = reinterpret_cast<int*>(_zeros.data_ptr<int>());
450
    int group_size = num_in_channels / _scaling_factors.size(0);
Ji Lin's avatar
Ji Lin committed
451

452
453
    if (num_out_channels % 64 != 0)
        throw std::invalid_argument("OC is not multiple of cta_N = 64");
Ji Lin's avatar
Ji Lin committed
454
455
    if (num_out_channels % 8 != 0)
        throw std::invalid_argument("OC is not multiple of pack_num = 8");
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    if (group_size % 32 != 0)
	      throw std::invalid_argument("Group size should be a multiple of 32");
    if (num_out_channels % group_size != 0)
        throw std::invalid_argument("OC is not multiple of Group size");

    if (num_out_channels % 128 == 0)
    {
        int j_factors1 = num_out_channels / 128 / 1;
        dim3 num_blocks((num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
        // threadIdx.x: 32
        // threadIdx.y: i_factors[2] * j_factors[2]
        dim3 threads_per_block(32, 2);
        gemm_forward_4bit_cuda_m16n128k32<<<num_blocks, threads_per_block>>>(
            group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels, num_out_channels, out_feats);
    }
    else if (num_out_channels % 64 == 0)
    {
	int j_factors1 = num_out_channels / 64 / 1;
        dim3 num_blocks(1 * (num_out_feats + 16 - 1) / 16 * j_factors1 * split_k_iters);
Ji Lin's avatar
Ji Lin committed
475
    
476
477
478
479
480
481
        // threadIdx.x: 32
        // threadIdx.y: i_factors[2] * j_factors[2]
        dim3 threads_per_block(32, 2);
        gemm_forward_4bit_cuda_m16n64k32<<<num_blocks, threads_per_block>>>(
            group_size, split_k_iters, in_feats, kernel, scaling_factors, zeros, num_in_feats, num_in_channels, num_out_channels, out_feats);
    }
Ji Lin's avatar
Ji Lin committed
482
483
    return _out_feats.sum(0);
}