fused_utils.py 5.98 KB
Newer Older
Casper's avatar
Casper committed
1
import torch
2
3
4
5
from awq.modules.linear.gemm import WQLinear_GEMM
from awq.modules.linear.gemv import WQLinear_GEMV
from awq.modules.linear.exllama import WQLinear_Exllama
from awq.modules.linear.exllamav2 import WQLinear_ExllamaV2
Casper's avatar
Casper committed
6

7
8
9
10
11
12
13
14
def prepare_correct_devices(next_layer, hidden_states, mask):
    hidden_states = hidden_states.to(next_layer.device)

    if mask is not None:
        mask = mask.to(next_layer.device)

    return hidden_states, mask
    
Casper's avatar
Casper committed
15
16
17
18
19
20
def prepare_cache(blocks, seqlen: int) -> int:
    for block in blocks:
        start_pos = block.attn.start_pos
        will_cache_be_exceeded = start_pos + seqlen > block.attn.max_seq_len

        # Reset and avoid retaining state when processing context
Casper's avatar
Casper committed
21
        if seqlen > 1 and (will_cache_be_exceeded or start_pos > 0):
Casper's avatar
Casper committed
22
23
24
25
26
27
            block.attn.start_pos = block.attn.cache.roll_kv_n_steps(start_pos, n=start_pos)
        
        # Slowly roll out old tokens without performance hit if exceeded during decoding 
        elif seqlen == 1 and will_cache_be_exceeded:
            block.attn.start_pos = block.attn.cache.roll_kv_n_steps(start_pos, n=100)

Casper's avatar
Casper committed
28
29
30
31
32
33
34
35
36
def prepare_input_ids(input_ids: torch.Tensor, last_forward_num_tokens: int):
    # NOTE: from transformers 4.35.0, input_ids includes full context during decoding
    num_input_tokens = input_ids.shape[-1]
    num_new_tokens = num_input_tokens

    if num_input_tokens != 1:
        num_new_tokens = num_input_tokens - last_forward_num_tokens
        
        # after context is processed, slice to latest token
Casper's avatar
Casper committed
37
        if num_new_tokens == 1:
Casper's avatar
Casper committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
            input_ids = input_ids[:, -1:]

    return input_ids, last_forward_num_tokens + num_new_tokens

def prepare_attention_mask(seqlen, start_pos, device, type_as: torch.Tensor):
    mask = None
    if seqlen > 1:
        mask = torch.full(
            (1, 1, seqlen, seqlen), float("-inf"), device=device
        )
        mask = torch.triu(mask, diagonal=start_pos+ 1).type_as(type_as)
    
    return mask

def fuse_qkv(module, q_proj, k_proj, v_proj):
    bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None

    if isinstance(q_proj, WQLinear_GEMV):
        q_linear = WQLinear_GEMV
57
    elif isinstance(q_proj, WQLinear_GEMM):
Casper's avatar
Casper committed
58
        q_linear = WQLinear_GEMM
59
60
61
62
    elif isinstance(q_proj, WQLinear_Exllama):
        q_linear = WQLinear_Exllama
    else:
        q_linear = WQLinear_ExllamaV2
Casper's avatar
Casper committed
63
64
65
66
67
68
69
70
71
72

    qkv_layer = q_linear(
        q_proj.w_bit,
        q_proj.group_size,
        q_proj.in_features,
        q_proj.out_features + k_proj.out_features + v_proj.out_features,
        q_proj.bias is not None,
        next(iter(module.state_dict().values())).device
    )

73
    if isinstance(q_proj, WQLinear_GEMV):
Casper's avatar
Casper committed
74
75
76
77
        qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=0)
        qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=0)
        qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=0)
        qkv_layer.split_k_iters = q_proj.split_k_iters
78
79
80
81
82
83
84
85
86
    elif isinstance(q_proj, WQLinear_GEMM):
        qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
        qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
        qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
    elif isinstance(q_proj, WQLinear_Exllama):
        qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
        qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
        qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
    elif isinstance(q_proj, WQLinear_ExllamaV2):
Casper's avatar
Casper committed
87
88
89
90
91
92
93
        qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1)
        qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1)
        qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1)
    
    qkv_layer.bias = bias

    return qkv_layer
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

def get_attention_shapes(attention_shapes, max_seq_len, cache_batch_size, n_heads, n_kv_heads, head_dim):
    if attention_shapes is not None:
        attention_shapes = attention_shapes

    elif n_kv_heads == 0:
        attention_shapes = {
            # following fastertransformer definition
            "cache_v": (cache_batch_size, n_heads, max_seq_len, head_dim,),
            # 8: pack 8 fp16 in FT, if fp32 then use 4
            "cache_k": (cache_batch_size, n_heads, head_dim // 8, max_seq_len, 8,),
            "xqkv_view": (-1, n_heads, head_dim),
            "xq_slice": lambda xqkv: xqkv[:, :, 0],
            "xk_slice": lambda xqkv: xqkv[:, :, 1],
            "xv_slice": lambda xqkv: xqkv[:, :, 2],
            "xq_view": (n_heads, head_dim),
            "xk_view": (n_heads, head_dim),
            "xv_view": (n_heads, head_dim),
            "xk_reshape": (n_heads, head_dim // 8, 8),
            "single_xq_view": (n_heads, head_dim),
            "single_xk_view": (n_heads, head_dim),
            "single_xv_view": (n_heads, head_dim)
        }

    else:
        attention_shapes = {
            # following fastertransformer definition
            "cache_v": (cache_batch_size, n_kv_heads, max_seq_len, head_dim,),
            # 8: pack 8 fp16 in FT, if fp32 then use 4
            "cache_k": (cache_batch_size, n_kv_heads, head_dim // 8, max_seq_len, 8,),
            "xqkv_view": (n_heads + n_kv_heads * 2, head_dim),
            "xq_slice": lambda xqkv: xqkv[:, :, 0 : n_heads],
            "xk_slice": lambda xqkv: xqkv[:, :, n_heads : (n_heads + n_kv_heads)],
            "xv_slice": lambda xqkv: xqkv[:, :, -n_kv_heads :],
            "xq_view": (n_heads, head_dim),
            "xk_view": (n_kv_heads, head_dim),
            "xv_view": (n_kv_heads, head_dim),
            "xk_reshape": (n_kv_heads, head_dim // 8, 8),
            "single_xq_view": (n_heads, head_dim),
            "single_xk_view": (n_kv_heads, head_dim),
            "single_xv_view": (n_kv_heads, head_dim)
        }
    
    return attention_shapes