exllama.py 3.95 KB
Newer Older
1
2
import torch
import torch.nn as nn
3
from awq.utils.packing_utils import unpack_reorder_pack
4

5
6
7
8
9
try:
    import exl_ext  # with CUDA kernels (AutoAWQ_kernels)
    AWQ_INSTALLED = True
except:
    AWQ_INSTALLED = False
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
none_tensor = torch.empty((1, 1), device="meta")


class WQLinear_Exllama(nn.Module):
    def __init__(self, w_bit, group_size, in_features, out_features, bias, dev):
        super().__init__()

        if w_bit not in [4]:
            raise NotImplementedError("Only 4-bit are supported for Exllama kernels")

        self.q4 = None

        self.w_bit = w_bit
        self.in_features = in_features
        self.out_features = out_features
        self.group_size = group_size if group_size != -1 else in_features

        ##################################################################################
        ## These shapes are only for compatibility with the state_dict of WQLinear_GEMM ##
        self.register_buffer(
            "qweight",
            torch.zeros(
                (in_features, out_features // (32 // self.w_bit)),
                dtype=torch.int32,
                device=dev,
            ),
        )
        self.register_buffer(
            "qzeros",
            torch.zeros(
                (in_features // self.group_size, out_features // (32 // self.w_bit)),
                dtype=torch.int32,
                device=dev,
            ),
        )
        ##################################################################################

        self.register_buffer(
            "scales",
            torch.zeros(
                (in_features // self.group_size, out_features),
                dtype=torch.float16,
                device=dev,
            ),
        )
        if bias:
            self.register_buffer(
                "bias",
                torch.zeros(
                    (out_features),
                    dtype=torch.float16,
                    device=dev,
                ),
            )
        else:
            self.bias = None

    def post_init(self):
        assert self.qweight.device.type == "cuda"
        assert self.qweight.device.index is not None

        self.qweight, self.qzeros = unpack_reorder_pack(
            self.qweight, self.qzeros, self.w_bit
        )
        self.q4 = exl_ext.make_q4(
            self.qweight,
            self.qzeros,
            self.scales,
            none_tensor,  # g_idx
            self.qweight.device.index,  # device index
        )

    @classmethod
    def from_linear(
        cls, linear, w_bit, group_size, init_only=False, scales=None, zeros=None
    ):
        awq_linear = cls(
            w_bit,
            group_size,
            linear.in_features,
            linear.out_features,
            linear.bias is not None,
            linear.weight.device,
        )
        if init_only:  # just prepare for loading sd
            return awq_linear

        raise NotImplementedError("Only inference is supported for Exllama kernels")

    def forward(self, x):
        assert self.q4 is not None, (
            "module.post_init() must be called before module.forward(). "
            "Use exllama_post_init() on the whole model."
        )

        input_dtype = x.dtype
        out_shape = x.shape[:-1] + (self.out_features,)

        if input_dtype != torch.float16:
            x = x.to(dtype=torch.float16)

        x = x.view(-1, x.shape[-1])

        out = torch.empty(
            (x.shape[0], self.out_features),
            dtype=torch.float16,
            device=x.device,
        )
        exl_ext.q4_matmul(x, self.q4, out)

        if input_dtype != torch.float16:
            out = out.to(dtype=input_dtype)

        if self.bias is not None:
            out.add_(self.bias)

        return out.view(out_shape)


def exllama_post_init(model):
    for _, submodule in model.named_modules():
        if isinstance(submodule, WQLinear_Exllama):
            submodule.post_init()

    return model