kl_divergence.py 5.31 KB
Newer Older
Casper's avatar
Casper committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# adapted from https://gist.github.com/Ttl/0d51f739dc59254b4b2183e259c97d82

import torch
import numpy as np
from tqdm import tqdm
from datasets import load_dataset
from transformers import (
    PreTrainedTokenizer,
    PreTrainedModel,
    AutoModelForCausalLM,
    AutoTokenizer,
)

try:
    from scipy.stats import bayes_mvs
    from scipy.stats import t as student_t
    from scipy.stats.mstats import mquantiles_cimj
    SCIPY_INSTALLED = True
except:
    SCIPY_INSTALLED = False

@torch.jit.script
def rel_entr(x, y):
    mask = (x > 0) & (y > 0)
    result = torch.where(mask, x * torch.log(x / y), torch.zeros_like(x))
    result[(x > 0) & (y <= 0)] = float('inf')
    return result

def bin_conf(p, n, z):
    # Binomial distribution confidence bounds
    # Bayes estimator when p is degenerate
    if p == 0:
        p = 1 / (n + 2)
    if p == 1:
        p = 1 - 1 / (n + 2)
    return z * torch.sqrt(p*(1-p)/n)

def eval_kl_divergence(ref_model: PreTrainedModel, eval_model: PreTrainedModel, tokenizer: PreTrainedTokenizer, seqlen: int):
    if not SCIPY_INSTALLED:
        raise Exception("SciPy needs to be installed for KL Divergence evaluation: pip install scipy")

    # load dataset
    data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
    data = tokenizer("\n\n".join(data['text']), return_tensors='pt')
    data = data.input_ids.to(ref_model.device)

    n_samples = data.numel() // seqlen

    alpha = 0.01
    kls = []
    top1 = 0
    top5 = 0
    top10 = 0
    eval_top5 = 0
    eval_top10 = 0
    samples = 0
    i = 0

    # start eval
    with tqdm(range(n_samples), desc="KL Div") as progress_bar:
        for i in progress_bar:
            start_index = (i * seqlen)
            end_index = ((i + 1) * seqlen)
            batch_len = end_index-start_index
            batch = data[:, start_index:end_index]
        
            # get logits
            with torch.no_grad():
                y1 = ref_model(batch)[0]
                y2 = eval_model(batch)[0]

            # kl divergence
            y1_probs = torch.softmax(y1, dim=-1)
            y2_probs = torch.softmax(y2, dim=-1)
            relative_entropy = rel_entr(y1_probs, y2_probs)
            kl_div = torch.sum(relative_entropy, dim=-1).squeeze(0)
            kls.append(torch.nan_to_num(kl_div).tolist())
            
            # stats
            eval_argmax = torch.argmax(y2, axis=-1).squeeze(0)
            ref_argmax = torch.argmax(y1, axis=-1).squeeze(0)
            eval_part5 = torch.topk(y2, k=5, dim=-1).indices[:, :, -5].squeeze(0)
            ref_part5 = torch.topk(y1, k=5, dim=-1).indices[:, :, -5].squeeze(0)
            eval_part10 = torch.topk(y2, k=10, dim=-1).indices[:, :, -10].squeeze(0)
            ref_part10 = torch.topk(y1, k=10, dim=-1).indices[:, :, -10].squeeze(0)
            top1 += (eval_argmax == ref_argmax).sum().item()
            top5 += ((ref_argmax == eval_part5).sum()).item()
            top10 += ((ref_argmax == eval_part10).sum()).item()
            eval_top5 += ((eval_argmax == ref_part5).sum()).item()
            eval_top10 += ((eval_argmax == ref_part10).sum()).item()
            samples += batch_len

            progress_bar.set_description(
                f"KL Div: {torch.mean(torch.Tensor(kls)):.4g}, "
                f"Top 1: {top1 / samples:.4g}, "
                f"Top 5: {top5 / samples:.4g}, "
                f"Top 10: {top10 / samples:.4g}"
            )
    
    z = student_t.ppf(1 - alpha/2, samples)
    m_conf = z*np.sqrt(np.mean([k**2 for k in kls])/len(kls))
    m, _, __ = bayes_mvs(kls, 1-alpha)
    q90 = np.quantile(kls, 0.90)
    q95 = np.quantile(kls, 0.95)
    q99 = np.quantile(kls, 0.99)
    q_bounds = mquantiles_cimj(kls, prob=[0.90, 0.95, 0.99])

    print(" -- ")
    print(" ** Reference model:", ref_model.config.model_type)
    print(" ** Evaluation model:", eval_model.config.model_type)
    print(" -- ")
    print(f" ** KL Divergence: {m[0]:.6g}, [{m[1][0]:.6g} - {m[1][1]:.6g}]")
    print(f" ** q90: {q90:.4g}, [{q_bounds[0][0]:.4g} - {q_bounds[1][0]:.4g}]")
    print(f" ** q95: {q95:.4g}, [{q_bounds[0][1]:.4g} - {q_bounds[1][1]:.4g}]")
    print(f" ** q99: {q99:.4g}, [{q_bounds[0][2]:.4g} - {q_bounds[1][2]:.4g}]")
    print(f"max: {np.max(kls):.4g}")
    print(" -- ")
    print("Reference top token in eval top-n probability:")
    print(f" ** ref_top1: {top1 / samples:.4g} ± {bin_conf(top1/samples, samples, z):.4g}")
    print(f" ** ref_top5: {top5 / samples:.4g} ± {bin_conf(top5/samples, samples, z):.4g}")
    print(f" ** ref_top10: {top10 / samples:4g} ± {bin_conf(top10/samples, samples, z):.4g}")
    print("Eval top token in reference top-n probability:")
    print(f" ** eval_top5: {eval_top5 / samples:.4g} ± {bin_conf(eval_top5/samples, samples, z):.4g}")
    print(f" ** eval_top10: {eval_top10 / samples:4g} ± {bin_conf(eval_top10/samples, samples, z):.4g}")

if __name__ == '__main__':
    # ref_model_path = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
    # eval_model_path = "TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T"
    ref_model_path = eval_model_path = "gpt2"

    tokenizer = AutoTokenizer.from_pretrained(ref_model_path)
    ref_model = AutoModelForCausalLM.from_pretrained(ref_model_path, device_map="auto")
    eval_model = AutoModelForCausalLM.from_pretrained(eval_model_path, device_map="auto")

    eval_kl_divergence(ref_model, eval_model, tokenizer, seqlen=1024)