eval_utils.py 5.17 KB
Newer Older
Casper's avatar
Casper committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import torch.nn as nn
from tqdm import tqdm
from lm_eval import evaluator
from datasets import load_dataset
from transformers import pipeline
from evaluate import load as load_metric
from lm_eval.tasks import initialize_tasks
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.whisper.english_normalizer import BasicTextNormalizer

def get_device():
    if torch.backends.mps.is_available():
        return 'mps'
    elif torch.cuda.is_available():
        return 'cuda:0'
    else:
        return 'cpu'

def evaluate_perplexity(model, tokenizer):
    def _perplexity(nlls, n_samples, seqlen):
        return torch.exp(torch.stack(nlls).sum() / (n_samples * seqlen))
    
    # load and prepare dataset
    data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test')
    data = tokenizer("\n\n".join(data['text']), return_tensors='pt')
    data = data.input_ids.to(model.device)

    seqlen = 2048
    model = model.eval()
    n_samples = data.numel() // seqlen
    
    nlls = []

    with tqdm(range(n_samples), desc="Perplexity -") as progress_bar:
        for i in progress_bar:
            start_index = (i * seqlen)
            end_index = ((i + 1) * seqlen)
            batch = data[:, start_index:end_index].to(model.device)
            with torch.no_grad():
                logits = model(batch).logits
            shift_logits = logits[:, :-1, :].contiguous().float()
            shift_labels = data[:, start_index:end_index][:, 1:]
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
            neg_log_likelihood = loss.float() * seqlen
            nlls.append(neg_log_likelihood)

            curr_ppl = _perplexity(nlls, i+1, seqlen)
            progress_bar.set_description(f"Perplexity {curr_ppl:.3f}")

    ppl = _perplexity(nlls, n_samples, seqlen)
    
    return ppl.item()

def eval_librispeech(model_id, num_samples=100, batch_size=4):
    try:
        import jiwer, librosa, soundfile
    except ImportError:
        print("Please install the following: pip install jiwer librosa soundfile")
    
    dataset = load_dataset("librispeech_asr", "clean", split="test", streaming=True)

    # Load the Whisper model pipeline for automatic speech recognition
    pipe = pipeline(
        task="automatic-speech-recognition",
        model=model_id,
        batch_size=batch_size,
        device=get_device(),
        torch_dtype=torch.float16,
    )

    # Word normalizer
    normalizer = BasicTextNormalizer()
    
    # Load the WER metric
    wer_metric = load_metric("wer")

    texts = []
    audio = []
    for i, data in tqdm(enumerate(dataset), total=num_samples, desc="Loading dataset"):
        if len(audio) == num_samples: break
        audio.append(data["audio"])
        texts.append(data["text"])

    references = []
    predictions = []

    with tqdm(range(0, num_samples, batch_size), desc="Word Error Rate: -") as pbar:
        for i in pbar:
            batch_audio = audio[i:i+batch_size]
            batch_texts = texts[i:i+batch_size]

            # inference
            results = pipe(batch_audio, batch_size=len(batch_audio))

            # normalize text
            normalized_predictions = [normalizer(result["text"]) for result in results]
            normalized_texts = [normalizer(text) for text in batch_texts]

            predictions.extend(normalized_predictions)
            references.extend(normalized_texts)

            # word error rate computation
            wer = wer_metric.compute(predictions=predictions, references=references) * 100
            pbar.set_description(f"Word Error Rate: {wer:.3f}%")

def eval_mmlu(model_path="gpt2", num_fewshot=1, batch_size=1, device="cuda:0", task_use_pretrained=False):
    try:
        import vllm
        VLLM_INSTALLED = True
    except ImportError:
        VLLM_INSTALLED = False
    
    initialize_tasks(verbosity="DEBUG")

    if VLLM_INSTALLED:
        model = "vllm"
        model_args = dict(
            pretrained=model_path,
            max_model_len=2048,
            dtype="float16",
            trust_remote_code=True,
        )

        if not task_use_pretrained:
            model_args["quantization"] = "awq"
    else:
        model = "hf"
        model_args = dict(
            pretrained=model_path,
            device_map_option=device,
            dtype="float16",
            trust_remote_code=True,
        )
    model_args = ",".join([f"{k}={v}" for k,v in model_args.items()])

    results = evaluator.simple_evaluate(
        model=model,
        model_args=model_args,
        tasks=['mmlu'],
        num_fewshot=num_fewshot,
        batch_size=batch_size,
        device=device,
        log_samples=False,
    )

    print(evaluator.make_table(results))

if __name__ == '__main__':
    ### PERPLEXITY
    # model_path = 'mistralai/Mistral-7B-Instruct-v0.1'
    # model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
    # tokenizer = AutoTokenizer.from_pretrained(model_path)
    # evaluate_perplexity(model, tokenizer)

    ### WORD ERROR RATE
    # model_id = "distil-whisper/distil-small.en" # 3.594
    model_id = "distil-whisper/distil-medium.en" # 3.436
    eval_librispeech(model_id)