train.py 1.76 KB
Newer Older
Casper's avatar
Casper committed
1
2
3
4
5
6
7
8
9
10
11
12
import datasets
from awq import AutoAWQForCausalLM
from transformers import (
    AutoTokenizer,
    TrainingArguments,
    Trainer,
    DataCollatorForLanguageModeling
)
from peft import get_peft_model, LoraConfig, TaskType

def prepare_split(tokenizer):
    data = datasets.load_dataset("mhenrichsen/alpaca_2k_test", split="train")
Casper's avatar
Casper committed
13
    prompt_template = "<s>[INST] {prompt} [/INST] {output}</s>"
Casper's avatar
Casper committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27

    def format_prompt(x):
        return prompt_template.format(
            prompt=x["instruction"],
            output=x["output"]
        )

    data = data.map(
        lambda x: {"text": format_prompt(x)},
    ).select_columns(["text"])
    data = data.map(lambda x: tokenizer(x["text"]), batched=True)

    return data

Casper's avatar
Casper committed
28
model_path = "TheBloke/Mistral-7B-v0.1-AWQ"
Casper's avatar
Casper committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

# Load model
model = AutoAWQForCausalLM.from_quantized(model_path, fuse_layers=False)
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer.pad_token = tokenizer.eos_token

# Prepare data
data_train = prepare_split(tokenizer)

# Config Lora
lora_config = LoraConfig(
    r=4,
    lora_alpha=8,
    lora_dropout=0.5,
    bias="none",
    task_type=TaskType.CAUSAL_LM,
    inference_mode=False
)

model = get_peft_model(model.model, lora_config)

model.print_trainable_parameters()

training_arguments = TrainingArguments(
    output_dir="./output",
    per_device_train_batch_size=1,
    optim="adamw_torch",
    num_train_epochs=1,
    learning_rate=1e-4,
    evaluation_strategy="no",
    save_strategy="epoch",
    save_steps=100,
    logging_steps=50,
    eval_steps=None,
    load_best_model_at_end=False
)

trainer = Trainer(
    model=model,
    train_dataset=data_train,
    args=training_arguments,
    data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)

trainer.train()
trainer.save_model("output")