quantize.py 677 Bytes
Newer Older
Casper's avatar
Casper committed
1
2
3
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

Casper's avatar
Casper committed
4
5
model_path = 'mistralai/Mistral-7B-Instruct-v0.2'
quant_path = 'mistral-instruct-v0.2-awq'
Casper Hansen's avatar
Casper Hansen committed
6
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
Casper's avatar
Casper committed
7
8

# Load model
9
10
11
model = AutoAWQForCausalLM.from_pretrained(
    model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
)
Casper's avatar
Casper committed
12
13
14
15
16
17
18
19
20
21
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Quantize
model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)

print(f'Model is quantized and saved at "{quant_path}"')