fused_utils.py 7.82 KB
Newer Older
Casper's avatar
Casper committed
1
import torch
2

3
4
from awq.modules.linear.gemm import WQLinear_GEMM
from awq.modules.linear.gemv import WQLinear_GEMV
5
from awq.modules.linear.marlin import WQLinear_Marlin
6
7
from awq.modules.linear.exllama import WQLinear_Exllama
from awq.modules.linear.exllamav2 import WQLinear_ExllamaV2
Casper's avatar
Casper committed
8

Casper's avatar
Casper committed
9

10
11
12
13
14
15
16
def prepare_correct_devices(next_layer, hidden_states, mask):
    hidden_states = hidden_states.to(next_layer.device)

    if mask is not None:
        mask = mask.to(next_layer.device)

    return hidden_states, mask
Casper's avatar
Casper committed
17
18


Casper's avatar
Casper committed
19
20
21
22
23
24
def prepare_cache(blocks, seqlen: int) -> int:
    for block in blocks:
        start_pos = block.attn.start_pos
        will_cache_be_exceeded = start_pos + seqlen > block.attn.max_seq_len

        # Reset and avoid retaining state when processing context
Casper's avatar
Casper committed
25
        if seqlen > 1 and (will_cache_be_exceeded or start_pos > 0):
Casper's avatar
Casper committed
26
27
28
29
30
            block.attn.start_pos = block.attn.cache.roll_kv_n_steps(
                start_pos, n=start_pos
            )

        # Slowly roll out old tokens without performance hit if exceeded during decoding
Casper's avatar
Casper committed
31
32
33
        elif seqlen == 1 and will_cache_be_exceeded:
            block.attn.start_pos = block.attn.cache.roll_kv_n_steps(start_pos, n=100)

Casper's avatar
Casper committed
34

Casper's avatar
Casper committed
35
36
37
38
39
40
41
def prepare_input_ids(input_ids: torch.Tensor, last_forward_num_tokens: int):
    # NOTE: from transformers 4.35.0, input_ids includes full context during decoding
    num_input_tokens = input_ids.shape[-1]
    num_new_tokens = num_input_tokens

    if num_input_tokens != 1:
        num_new_tokens = num_input_tokens - last_forward_num_tokens
Casper's avatar
Casper committed
42

Casper's avatar
Casper committed
43
        # after context is processed, slice to latest token
Casper's avatar
Casper committed
44
        if num_new_tokens == 1:
Casper's avatar
Casper committed
45
46
47
48
            input_ids = input_ids[:, -1:]

    return input_ids, last_forward_num_tokens + num_new_tokens

Casper's avatar
Casper committed
49

Casper's avatar
Casper committed
50
51
52
def prepare_attention_mask(seqlen, start_pos, device, type_as: torch.Tensor):
    mask = None
    if seqlen > 1:
Casper's avatar
Casper committed
53
54
55
        mask = torch.full((1, 1, seqlen, seqlen), float("-inf"), device=device)
        mask = torch.triu(mask, diagonal=start_pos + 1).type_as(type_as)

Casper's avatar
Casper committed
56
57
    return mask

Casper's avatar
Casper committed
58

Casper's avatar
Casper committed
59
def fuse_qkv(module, q_proj, k_proj, v_proj):
Casper's avatar
Casper committed
60
61
62
63
64
    bias = (
        torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0)
        if q_proj.bias is not None
        else None
    )
Casper's avatar
Casper committed
65
66
67

    if isinstance(q_proj, WQLinear_GEMV):
        q_linear = WQLinear_GEMV
68
    elif isinstance(q_proj, WQLinear_GEMM):
Casper's avatar
Casper committed
69
        q_linear = WQLinear_GEMM
70
71
    elif isinstance(q_proj, WQLinear_Exllama):
        q_linear = WQLinear_Exllama
72
    elif isinstance(q_proj, WQLinear_ExllamaV2):
73
        q_linear = WQLinear_ExllamaV2
74
75
    elif isinstance(q_proj, WQLinear_Marlin):
        q_linear = WQLinear_Marlin
Casper's avatar
Casper committed
76
77
78
79
80
81
82

    qkv_layer = q_linear(
        q_proj.w_bit,
        q_proj.group_size,
        q_proj.in_features,
        q_proj.out_features + k_proj.out_features + v_proj.out_features,
        q_proj.bias is not None,
Casper's avatar
Casper committed
83
        next(iter(module.state_dict().values())).device,
Casper's avatar
Casper committed
84
85
    )

86
    if isinstance(q_proj, WQLinear_GEMV):
Casper's avatar
Casper committed
87
88
89
90
91
92
93
94
95
        qkv_layer.qweight = torch.cat(
            [q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=0
        )
        qkv_layer.qzeros = torch.cat(
            [q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=0
        )
        qkv_layer.scales = torch.cat(
            [q_proj.scales, k_proj.scales, v_proj.scales], dim=0
        )
Casper's avatar
Casper committed
96
        qkv_layer.split_k_iters = q_proj.split_k_iters
97
    elif isinstance(q_proj, WQLinear_GEMM):
Casper's avatar
Casper committed
98
99
100
101
102
103
104
105
106
        qkv_layer.qweight = torch.cat(
            [q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1
        )
        qkv_layer.qzeros = torch.cat(
            [q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1
        )
        qkv_layer.scales = torch.cat(
            [q_proj.scales, k_proj.scales, v_proj.scales], dim=1
        )
107
    elif isinstance(q_proj, WQLinear_Exllama):
Casper's avatar
Casper committed
108
109
110
111
112
113
114
115
116
        qkv_layer.qweight = torch.cat(
            [q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1
        )
        qkv_layer.qzeros = torch.cat(
            [q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1
        )
        qkv_layer.scales = torch.cat(
            [q_proj.scales, k_proj.scales, v_proj.scales], dim=1
        )
117
    elif isinstance(q_proj, WQLinear_ExllamaV2):
Casper's avatar
Casper committed
118
119
120
121
122
123
124
125
126
        qkv_layer.qweight = torch.cat(
            [q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1
        )
        qkv_layer.qzeros = torch.cat(
            [q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1
        )
        qkv_layer.scales = torch.cat(
            [q_proj.scales, k_proj.scales, v_proj.scales], dim=1
        )
127
    elif isinstance(q_proj, WQLinear_Marlin):
Casper's avatar
Casper committed
128
129
130
131
132
133
        qkv_layer.qweight = torch.cat(
            [q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1
        )
        qkv_layer.scales = torch.cat(
            [q_proj.scales, k_proj.scales, v_proj.scales], dim=1
        )
134
        # workspace is created in post_init
Casper's avatar
Casper committed
135

Casper's avatar
Casper committed
136
137
    qkv_layer.bias = bias

Casper's avatar
Casper committed
138
139
140
    for layer in [q_proj, k_proj, v_proj]:
        del (layer.qweight, layer.qzeros, layer.scales)

Casper's avatar
Casper committed
141
    return qkv_layer
142

Casper's avatar
Casper committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

def fuse_linears(linears, device, dim=1, operation=torch.cat):
    total_out_features = sum([layer.out_features for layer in linears])
    fused = WQLinear_GEMM(
        linears[0].w_bit,
        linears[0].group_size,
        linears[0].in_features,
        total_out_features,
        bias=None,
        dev=device,
    )
    fused.qweight = operation([layer.qweight for layer in linears], dim=dim)
    fused.qzeros = operation([layer.qzeros for layer in linears], dim=dim)
    fused.scales = operation([layer.scales for layer in linears], dim=dim)

    for layer in linears:
        del (layer.qweight, layer.qzeros, layer.scales, layer)

    return fused


def get_attention_shapes(
    attention_shapes, max_seq_len, cache_batch_size, n_heads, n_kv_heads, head_dim
):
167
168
169
170
171
172
    if attention_shapes is not None:
        attention_shapes = attention_shapes

    elif n_kv_heads == 0:
        attention_shapes = {
            # following fastertransformer definition
Casper's avatar
Casper committed
173
174
175
176
177
178
            "cache_v": (
                cache_batch_size,
                n_heads,
                max_seq_len,
                head_dim,
            ),
179
            # 8: pack 8 fp16 in FT, if fp32 then use 4
Casper's avatar
Casper committed
180
181
182
183
184
185
186
            "cache_k": (
                cache_batch_size,
                n_heads,
                head_dim // 8,
                max_seq_len,
                8,
            ),
187
188
189
190
191
192
193
194
195
196
            "xqkv_view": (-1, n_heads, head_dim),
            "xq_slice": lambda xqkv: xqkv[:, :, 0],
            "xk_slice": lambda xqkv: xqkv[:, :, 1],
            "xv_slice": lambda xqkv: xqkv[:, :, 2],
            "xq_view": (n_heads, head_dim),
            "xk_view": (n_heads, head_dim),
            "xv_view": (n_heads, head_dim),
            "xk_reshape": (n_heads, head_dim // 8, 8),
            "single_xq_view": (n_heads, head_dim),
            "single_xk_view": (n_heads, head_dim),
Casper's avatar
Casper committed
197
            "single_xv_view": (n_heads, head_dim),
198
199
200
201
202
        }

    else:
        attention_shapes = {
            # following fastertransformer definition
Casper's avatar
Casper committed
203
204
205
206
207
208
            "cache_v": (
                cache_batch_size,
                n_kv_heads,
                max_seq_len,
                head_dim,
            ),
209
            # 8: pack 8 fp16 in FT, if fp32 then use 4
Casper's avatar
Casper committed
210
211
212
213
214
215
216
            "cache_k": (
                cache_batch_size,
                n_kv_heads,
                head_dim // 8,
                max_seq_len,
                8,
            ),
217
            "xqkv_view": (n_heads + n_kv_heads * 2, head_dim),
Casper's avatar
Casper committed
218
            "xq_slice": lambda xqkv: xqkv[:, :, 0:n_heads],
219
            "xk_slice": lambda xqkv: xqkv[:, :, n_heads : (n_heads + n_kv_heads)],
Casper's avatar
Casper committed
220
            "xv_slice": lambda xqkv: xqkv[:, :, -n_kv_heads:],
221
222
223
224
225
226
            "xq_view": (n_heads, head_dim),
            "xk_view": (n_kv_heads, head_dim),
            "xv_view": (n_kv_heads, head_dim),
            "xk_reshape": (n_kv_heads, head_dim // 8, 8),
            "single_xq_view": (n_heads, head_dim),
            "single_xk_view": (n_kv_heads, head_dim),
Casper's avatar
Casper committed
227
            "single_xv_view": (n_kv_heads, head_dim),
228
        }
Casper's avatar
Casper committed
229
230

    return attention_shapes